DeepZirel-V2
An experimental fine-tune of deepseek-ai/DeepSeek-V2-Lite-Chat using novel training approaches aimed at improving older model architectures.
Model Details
- Base Model: deepseek-ai/DeepSeek-V2-Lite-Chat
- Fine-tuned by: Daemontatox
- Purpose: Architecture improvement research
- Training: Experimental data and methodology targeting legacy architecture enhancement
- Language: Multilingual
Training Approach
This model explores new training techniques designed to enhance the performance of older model architectures. The experimental approach focuses on:
- Novel fine-tuning strategies for legacy architectures
- Custom training data optimization
- Architecture-specific improvements
Inference
Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"Daemontatox/DeepZirel-V2",
device_map="auto",
torch_dtype="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("Daemontatox/DeepZirel-V2", trust_remote_code=True)
messages = [
{"role": "user", "content": "Hello, how are you?"}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
print(response)
vLLM
from vllm import LLM, SamplingParams
llm = LLM(
model="Daemontatox/DeepZirel-V2",
tensor_parallel_size=2,
dtype="auto",
trust_remote_code=True
)
sampling_params = SamplingParams(
temperature=0.7,
top_p=0.9,
max_tokens=512
)
prompts = ["Hello, how are you?"]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
print(output.outputs[0].text)
vLLM OpenAI-Compatible Server
vllm serve Daemontatox/DeepZirel-V2 \
--tensor-parallel-size 2 \
--dtype auto \
--trust-remote-code \
--max-model-len 4096
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="token-abc123"
)
response = client.chat.completions.create(
model="Daemontatox/DeepZirel-V2",
messages=[
{"role": "user", "content": "Hello, how are you?"}
],
temperature=0.7,
max_tokens=512
)
print(response.choices[0].message.content)
TensorRT-LLM
# Convert to TensorRT-LLM format
python convert_checkpoint.py \
--model_dir Daemontatox/DeepZirel-V2 \
--output_dir ./trt_ckpt \
--dtype float16 \
--tp_size 2
# Build TensorRT engine
trtllm-build \
--checkpoint_dir ./trt_ckpt \
--output_dir ./trt_engine \
--gemm_plugin float16 \
--max_batch_size 8 \
--max_input_len 2048 \
--max_output_len 512
from tensorrt_llm import LLM
llm = LLM(model="./trt_engine")
prompts = ["Hello, how are you?"]
outputs = llm.generate(prompts, max_new_tokens=512)
for output in outputs:
print(output.text)
Modular MAX
# Serve with MAX Engine
max serve Daemontatox/DeepZirel-V2 \
--port 8000 \
--tensor-parallel-size 2
from max import engine
# Load model with MAX
model = engine.InferenceSession(
"Daemontatox/DeepZirel-V2",
device="cuda",
tensor_parallel=2
)
# Run inference
prompt = "Hello, how are you?"
output = model.generate(
prompt,
max_tokens=512,
temperature=0.7,
top_p=0.9
)
print(output.text)
# Using MAX with Python API
from max.serve import serve
from max.pipelines import pipeline
# Create pipeline
pipe = pipeline(
"text-generation",
model="Daemontatox/DeepZirel-V2",
device="cuda",
tensor_parallel=2
)
# Generate
result = pipe(
"Hello, how are you?",
max_new_tokens=512,
temperature=0.7,
top_p=0.9
)
print(result[0]["generated_text"])
Limitations
This is an experimental model using novel training approaches on legacy architectures. Results may vary and should be thoroughly tested before production deployment.
- Downloads last month
- 29