File size: 12,747 Bytes
eb06522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
"""
Helion-OSC API Server
FastAPI-based REST API for serving Helion-OSC model
"""
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from typing import Optional, List, Dict, Any, AsyncGenerator
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
import uvicorn
import logging
import time
import json
from queue import Queue
import asyncio
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="Helion-OSC API",
description="REST API for Helion-OSC Code Generation Model",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global model variables
model = None
tokenizer = None
device = None
class GenerationRequest(BaseModel):
"""Request model for text generation"""
prompt: str = Field(..., description="Input prompt for generation")
max_length: int = Field(2048, ge=1, le=16384, description="Maximum length of generation")
temperature: float = Field(0.7, ge=0.0, le=2.0, description="Sampling temperature")
top_p: float = Field(0.95, ge=0.0, le=1.0, description="Nucleus sampling parameter")
top_k: int = Field(50, ge=0, le=200, description="Top-k sampling parameter")
repetition_penalty: float = Field(1.05, ge=1.0, le=2.0, description="Repetition penalty")
do_sample: bool = Field(True, description="Whether to use sampling")
num_return_sequences: int = Field(1, ge=1, le=10, description="Number of sequences to generate")
stop_sequences: Optional[List[str]] = Field(None, description="Stop generation at these sequences")
stream: bool = Field(False, description="Stream the response")
task_type: Optional[str] = Field("code_generation", description="Task type for optimized parameters")
class GenerationResponse(BaseModel):
"""Response model for text generation"""
generated_text: str
prompt: str
model: str
generation_time: float
tokens_generated: int
class ModelInfo(BaseModel):
"""Model information"""
model_name: str
model_type: str
vocabulary_size: int
hidden_size: int
num_layers: int
device: str
dtype: str
max_position_embeddings: int
class HealthResponse(BaseModel):
"""Health check response"""
status: str
model_loaded: bool
device: str
timestamp: float
@app.on_event("startup")
async def load_model():
"""Load model on startup"""
global model, tokenizer, device
logger.info("Loading Helion-OSC model...")
model_name = "DeepXR/Helion-OSC"
device = "cuda" if torch.cuda.is_available() else "cpu"
try:
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
device_map="auto" if device == "cuda" else None,
trust_remote_code=True,
low_cpu_mem_usage=True
)
if device == "cpu":
model = model.to(device)
model.eval()
logger.info(f"Model loaded successfully on {device}")
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise
@app.get("/", response_model=Dict[str, str])
async def root():
"""Root endpoint"""
return {
"message": "Helion-OSC API Server",
"version": "1.0.0",
"documentation": "/docs"
}
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Health check endpoint"""
return HealthResponse(
status="healthy" if model is not None else "unhealthy",
model_loaded=model is not None,
device=device,
timestamp=time.time()
)
@app.get("/info", response_model=ModelInfo)
async def model_info():
"""Get model information"""
if model is None:
raise HTTPException(status_code=503, detail="Model not loaded")
config = model.config
return ModelInfo(
model_name="DeepXR/Helion-OSC",
model_type=config.model_type,
vocabulary_size=config.vocab_size,
hidden_size=config.hidden_size,
num_layers=config.num_hidden_layers,
device=device,
dtype=str(next(model.parameters()).dtype),
max_position_embeddings=config.max_position_embeddings
)
@app.post("/generate", response_model=GenerationResponse)
async def generate(request: GenerationRequest):
"""Generate text based on prompt"""
if model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="Model not loaded")
if request.stream:
raise HTTPException(
status_code=400,
detail="Use /generate/stream endpoint for streaming responses"
)
start_time = time.time()
try:
# Tokenize input
inputs = tokenizer(request.prompt, return_tensors="pt").to(device)
input_length = inputs.input_ids.shape[1]
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=request.max_length,
temperature=request.temperature,
top_p=request.top_p,
top_k=request.top_k,
repetition_penalty=request.repetition_penalty,
do_sample=request.do_sample,
num_return_sequences=request.num_return_sequences,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
# Decode output
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove prompt from output
generated_text = generated_text[len(request.prompt):].strip()
generation_time = time.time() - start_time
tokens_generated = outputs.shape[1] - input_length
return GenerationResponse(
generated_text=generated_text,
prompt=request.prompt,
model="DeepXR/Helion-OSC",
generation_time=generation_time,
tokens_generated=tokens_generated
)
except Exception as e:
logger.error(f"Generation error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate/stream")
async def generate_stream(request: GenerationRequest):
"""Generate text with streaming response"""
if model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="Model not loaded")
async def stream_generator() -> AsyncGenerator[str, None]:
try:
# Tokenize input
inputs = tokenizer(request.prompt, return_tensors="pt").to(device)
# Setup streamer
streamer = TextIteratorStreamer(
tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
# Generation kwargs
generation_kwargs = {
**inputs,
"max_length": request.max_length,
"temperature": request.temperature,
"top_p": request.top_p,
"top_k": request.top_k,
"repetition_penalty": request.repetition_penalty,
"do_sample": request.do_sample,
"pad_token_id": tokenizer.pad_token_id,
"eos_token_id": tokenizer.eos_token_id,
"streamer": streamer
}
# Start generation in separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Stream tokens
for text in streamer:
yield f"data: {json.dumps({'text': text})}\n\n"
await asyncio.sleep(0) # Allow other tasks to run
yield f"data: {json.dumps({'done': True})}\n\n"
except Exception as e:
logger.error(f"Streaming error: {e}")
yield f"data: {json.dumps({'error': str(e)})}\n\n"
return StreamingResponse(
stream_generator(),
media_type="text/event-stream"
)
@app.post("/code/complete")
async def code_complete(
code: str,
language: Optional[str] = "python",
max_length: int = 1024
):
"""Code completion endpoint"""
if model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="Model not loaded")
request = GenerationRequest(
prompt=code,
max_length=max_length,
temperature=0.6,
top_p=0.92,
do_sample=True,
task_type="code_completion"
)
return await generate(request)
@app.post("/code/explain")
async def code_explain(code: str, language: Optional[str] = "python"):
"""Code explanation endpoint"""
if model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="Model not loaded")
prompt = f"Explain the following {language} code in detail:\n\n```{language}\n{code}\n```\n\nExplanation:"
request = GenerationRequest(
prompt=prompt,
max_length=2048,
temperature=0.6,
top_p=0.9,
do_sample=True,
task_type="code_explanation"
)
return await generate(request)
@app.post("/code/debug")
async def code_debug(
code: str,
error_message: Optional[str] = None,
language: Optional[str] = "python"
):
"""Code debugging endpoint"""
if model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="Model not loaded")
prompt = f"Debug the following {language} code:\n\n```{language}\n{code}\n```"
if error_message:
prompt += f"\n\nError message: {error_message}"
prompt += "\n\nProvide a detailed analysis and fixed code:"
request = GenerationRequest(
prompt=prompt,
max_length=2048,
temperature=0.4,
top_p=0.88,
do_sample=False,
task_type="debugging"
)
return await generate(request)
@app.post("/math/solve")
async def math_solve(problem: str):
"""Mathematical problem solving endpoint"""
if model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="Model not loaded")
prompt = f"Solve the following mathematical problem step by step:\n\n{problem}\n\nSolution:"
request = GenerationRequest(
prompt=prompt,
max_length=2048,
temperature=0.3,
top_p=0.9,
do_sample=False,
task_type="mathematical_reasoning"
)
return await generate(request)
@app.post("/algorithm/design")
async def algorithm_design(
problem: str,
include_complexity: bool = True
):
"""Algorithm design endpoint"""
if model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="Model not loaded")
prompt = f"Design an efficient algorithm for the following problem:\n\n{problem}"
if include_complexity:
prompt += "\n\nInclude time and space complexity analysis."
request = GenerationRequest(
prompt=prompt,
max_length=3072,
temperature=0.5,
top_p=0.93,
do_sample=True,
task_type="algorithm_design"
)
return await generate(request)
def main():
"""Run the API server"""
import argparse
parser = argparse.ArgumentParser(description="Helion-OSC API Server")
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to bind to")
parser.add_argument("--port", type=int, default=8000, help="Port to bind to")
parser.add_argument("--reload", action="store_true", help="Enable auto-reload")
parser.add_argument("--workers", type=int, default=1, help="Number of worker processes")
args = parser.parse_args()
logger.info(f"Starting Helion-OSC API Server on {args.host}:{args.port}")
uvicorn.run(
"api_server:app",
host=args.host,
port=args.port,
reload=args.reload,
workers=args.workers
)
if __name__ == "__main__":
main() |