File size: 12,747 Bytes
eb06522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
"""
Helion-OSC API Server
FastAPI-based REST API for serving Helion-OSC model
"""

from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from typing import Optional, List, Dict, Any, AsyncGenerator
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
import uvicorn
import logging
import time
import json
from queue import Queue
import asyncio

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize FastAPI app
app = FastAPI(
    title="Helion-OSC API",
    description="REST API for Helion-OSC Code Generation Model",
    version="1.0.0"
)

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Global model variables
model = None
tokenizer = None
device = None


class GenerationRequest(BaseModel):
    """Request model for text generation"""
    prompt: str = Field(..., description="Input prompt for generation")
    max_length: int = Field(2048, ge=1, le=16384, description="Maximum length of generation")
    temperature: float = Field(0.7, ge=0.0, le=2.0, description="Sampling temperature")
    top_p: float = Field(0.95, ge=0.0, le=1.0, description="Nucleus sampling parameter")
    top_k: int = Field(50, ge=0, le=200, description="Top-k sampling parameter")
    repetition_penalty: float = Field(1.05, ge=1.0, le=2.0, description="Repetition penalty")
    do_sample: bool = Field(True, description="Whether to use sampling")
    num_return_sequences: int = Field(1, ge=1, le=10, description="Number of sequences to generate")
    stop_sequences: Optional[List[str]] = Field(None, description="Stop generation at these sequences")
    stream: bool = Field(False, description="Stream the response")
    task_type: Optional[str] = Field("code_generation", description="Task type for optimized parameters")


class GenerationResponse(BaseModel):
    """Response model for text generation"""
    generated_text: str
    prompt: str
    model: str
    generation_time: float
    tokens_generated: int


class ModelInfo(BaseModel):
    """Model information"""
    model_name: str
    model_type: str
    vocabulary_size: int
    hidden_size: int
    num_layers: int
    device: str
    dtype: str
    max_position_embeddings: int


class HealthResponse(BaseModel):
    """Health check response"""
    status: str
    model_loaded: bool
    device: str
    timestamp: float


@app.on_event("startup")
async def load_model():
    """Load model on startup"""
    global model, tokenizer, device
    
    logger.info("Loading Helion-OSC model...")
    
    model_name = "DeepXR/Helion-OSC"
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    try:
        # Load tokenizer
        tokenizer = AutoTokenizer.from_pretrained(
            model_name,
            trust_remote_code=True
        )
        
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        
        # Load model
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
            device_map="auto" if device == "cuda" else None,
            trust_remote_code=True,
            low_cpu_mem_usage=True
        )
        
        if device == "cpu":
            model = model.to(device)
        
        model.eval()
        
        logger.info(f"Model loaded successfully on {device}")
        
    except Exception as e:
        logger.error(f"Failed to load model: {e}")
        raise


@app.get("/", response_model=Dict[str, str])
async def root():
    """Root endpoint"""
    return {
        "message": "Helion-OSC API Server",
        "version": "1.0.0",
        "documentation": "/docs"
    }


@app.get("/health", response_model=HealthResponse)
async def health_check():
    """Health check endpoint"""
    return HealthResponse(
        status="healthy" if model is not None else "unhealthy",
        model_loaded=model is not None,
        device=device,
        timestamp=time.time()
    )


@app.get("/info", response_model=ModelInfo)
async def model_info():
    """Get model information"""
    if model is None:
        raise HTTPException(status_code=503, detail="Model not loaded")
    
    config = model.config
    
    return ModelInfo(
        model_name="DeepXR/Helion-OSC",
        model_type=config.model_type,
        vocabulary_size=config.vocab_size,
        hidden_size=config.hidden_size,
        num_layers=config.num_hidden_layers,
        device=device,
        dtype=str(next(model.parameters()).dtype),
        max_position_embeddings=config.max_position_embeddings
    )


@app.post("/generate", response_model=GenerationResponse)
async def generate(request: GenerationRequest):
    """Generate text based on prompt"""
    if model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="Model not loaded")
    
    if request.stream:
        raise HTTPException(
            status_code=400,
            detail="Use /generate/stream endpoint for streaming responses"
        )
    
    start_time = time.time()
    
    try:
        # Tokenize input
        inputs = tokenizer(request.prompt, return_tensors="pt").to(device)
        input_length = inputs.input_ids.shape[1]
        
        # Generate
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_length=request.max_length,
                temperature=request.temperature,
                top_p=request.top_p,
                top_k=request.top_k,
                repetition_penalty=request.repetition_penalty,
                do_sample=request.do_sample,
                num_return_sequences=request.num_return_sequences,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id
            )
        
        # Decode output
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Remove prompt from output
        generated_text = generated_text[len(request.prompt):].strip()
        
        generation_time = time.time() - start_time
        tokens_generated = outputs.shape[1] - input_length
        
        return GenerationResponse(
            generated_text=generated_text,
            prompt=request.prompt,
            model="DeepXR/Helion-OSC",
            generation_time=generation_time,
            tokens_generated=tokens_generated
        )
    
    except Exception as e:
        logger.error(f"Generation error: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@app.post("/generate/stream")
async def generate_stream(request: GenerationRequest):
    """Generate text with streaming response"""
    if model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="Model not loaded")
    
    async def stream_generator() -> AsyncGenerator[str, None]:
        try:
            # Tokenize input
            inputs = tokenizer(request.prompt, return_tensors="pt").to(device)
            
            # Setup streamer
            streamer = TextIteratorStreamer(
                tokenizer,
                skip_prompt=True,
                skip_special_tokens=True
            )
            
            # Generation kwargs
            generation_kwargs = {
                **inputs,
                "max_length": request.max_length,
                "temperature": request.temperature,
                "top_p": request.top_p,
                "top_k": request.top_k,
                "repetition_penalty": request.repetition_penalty,
                "do_sample": request.do_sample,
                "pad_token_id": tokenizer.pad_token_id,
                "eos_token_id": tokenizer.eos_token_id,
                "streamer": streamer
            }
            
            # Start generation in separate thread
            thread = Thread(target=model.generate, kwargs=generation_kwargs)
            thread.start()
            
            # Stream tokens
            for text in streamer:
                yield f"data: {json.dumps({'text': text})}\n\n"
                await asyncio.sleep(0)  # Allow other tasks to run
            
            yield f"data: {json.dumps({'done': True})}\n\n"
            
        except Exception as e:
            logger.error(f"Streaming error: {e}")
            yield f"data: {json.dumps({'error': str(e)})}\n\n"
    
    return StreamingResponse(
        stream_generator(),
        media_type="text/event-stream"
    )


@app.post("/code/complete")
async def code_complete(
    code: str,
    language: Optional[str] = "python",
    max_length: int = 1024
):
    """Code completion endpoint"""
    if model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="Model not loaded")
    
    request = GenerationRequest(
        prompt=code,
        max_length=max_length,
        temperature=0.6,
        top_p=0.92,
        do_sample=True,
        task_type="code_completion"
    )
    
    return await generate(request)


@app.post("/code/explain")
async def code_explain(code: str, language: Optional[str] = "python"):
    """Code explanation endpoint"""
    if model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="Model not loaded")
    
    prompt = f"Explain the following {language} code in detail:\n\n```{language}\n{code}\n```\n\nExplanation:"
    
    request = GenerationRequest(
        prompt=prompt,
        max_length=2048,
        temperature=0.6,
        top_p=0.9,
        do_sample=True,
        task_type="code_explanation"
    )
    
    return await generate(request)


@app.post("/code/debug")
async def code_debug(
    code: str,
    error_message: Optional[str] = None,
    language: Optional[str] = "python"
):
    """Code debugging endpoint"""
    if model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="Model not loaded")
    
    prompt = f"Debug the following {language} code:\n\n```{language}\n{code}\n```"
    if error_message:
        prompt += f"\n\nError message: {error_message}"
    prompt += "\n\nProvide a detailed analysis and fixed code:"
    
    request = GenerationRequest(
        prompt=prompt,
        max_length=2048,
        temperature=0.4,
        top_p=0.88,
        do_sample=False,
        task_type="debugging"
    )
    
    return await generate(request)


@app.post("/math/solve")
async def math_solve(problem: str):
    """Mathematical problem solving endpoint"""
    if model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="Model not loaded")
    
    prompt = f"Solve the following mathematical problem step by step:\n\n{problem}\n\nSolution:"
    
    request = GenerationRequest(
        prompt=prompt,
        max_length=2048,
        temperature=0.3,
        top_p=0.9,
        do_sample=False,
        task_type="mathematical_reasoning"
    )
    
    return await generate(request)


@app.post("/algorithm/design")
async def algorithm_design(
    problem: str,
    include_complexity: bool = True
):
    """Algorithm design endpoint"""
    if model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="Model not loaded")
    
    prompt = f"Design an efficient algorithm for the following problem:\n\n{problem}"
    if include_complexity:
        prompt += "\n\nInclude time and space complexity analysis."
    
    request = GenerationRequest(
        prompt=prompt,
        max_length=3072,
        temperature=0.5,
        top_p=0.93,
        do_sample=True,
        task_type="algorithm_design"
    )
    
    return await generate(request)


def main():
    """Run the API server"""
    import argparse
    
    parser = argparse.ArgumentParser(description="Helion-OSC API Server")
    parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to bind to")
    parser.add_argument("--port", type=int, default=8000, help="Port to bind to")
    parser.add_argument("--reload", action="store_true", help="Enable auto-reload")
    parser.add_argument("--workers", type=int, default=1, help="Number of worker processes")
    
    args = parser.parse_args()
    
    logger.info(f"Starting Helion-OSC API Server on {args.host}:{args.port}")
    
    uvicorn.run(
        "api_server:app",
        host=args.host,
        port=args.port,
        reload=args.reload,
        workers=args.workers
    )


if __name__ == "__main__":
    main()