Qwen2.5-7B-Instruct-LoRA-Alpaca-ZH
This is a LoRA fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the Alpaca-GPT4-ZH dataset.
Model Details
- Base Model: Qwen/Qwen2.5-7B-Instruct (7B parameters)
- Training Method: QLoRA (4-bit quantization)
- Trainable Parameters: 20.2M (0.46% of total)
- Dataset: Alpaca-GPT4-ZH (500 samples)
- Training Time: ~3.5 minutes
- Hardware: Lambda Cloud A10 GPU (24GB)
- Framework: ms-swift
Training Configuration
Model: Qwen/Qwen2.5-7B-Instruct
Training Type: LoRA
Quantization: 4-bit (BitsAndBytes)
LoRA Rank: 8
LoRA Alpha: 32
Target Modules: all-linear
Batch Size: 1
Gradient Accumulation: 4 steps
Learning Rate: 1e-4
Epochs: 1
Max Length: 2048
Training Loss: 1.395
GPU Memory: ~7GB
Usage
Using with Transformers + PEFT
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2.5-7B-Instruct",
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Load LoRA weights
model = PeftModel.from_pretrained(
base_model,
"FutureMa/Qwen2.5-7B-Instruct-LoRA-Alpaca-ZH"
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct")
# Generate response
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "解释什么是人工智能"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer([text], return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
)
response = tokenizer.decode(
outputs[0][len(inputs.input_ids[0]):],
skip_special_tokens=True
)
print(response)
Using with ms-swift
# Inference with fine-tuned model
swift infer --ckpt_dir FutureMa/Qwen2.5-7B-Instruct-LoRA-Alpaca-ZH
Training Results
Comparison: Base vs Fine-tuned Model
Question: "给出三个健康饮食的建议"
Base Model Response:
- Lengthy, detailed explanations
- May exceed token limits
- General knowledge-based
Fine-tuned Model Response:
- Concise and structured (3 clear points)
- Direct and actionable advice
- Matches Alpaca dataset style
- Complete within token limits
The fine-tuned model shows improved:
- Response structure and clarity
- Adherence to instruction format
- Conciseness while maintaining quality
- Better alignment with Chinese instruction-following tasks
Model Performance
- Training Runtime: 206.66 seconds
- Training Samples/Second: 2.42
- Training Loss: 1.395
- GPU Memory Usage: 7.03 GB (29% of 24GB)
Citation
If you use this model, please cite:
@misc{qwen2.5-7b-lora-alpaca-zh,
author = {FutureMa},
title = {Qwen2.5-7B-Instruct-LoRA-Alpaca-ZH},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/FutureMa/Qwen2.5-7B-Instruct-LoRA-Alpaca-ZH}}
}
License
This model is released under the Apache 2.0 license, following the base model's licensing.
Acknowledgments
- Base model: Qwen Team
- Training framework: ms-swift
- Dataset: Alpaca-GPT4-ZH
- Infrastructure: Lambda Cloud
- Downloads last month
- 14