File size: 7,895 Bytes
f7009b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import sys, os, json
root = os.sep + os.sep.join(__file__.split(os.sep)[1:__file__.split(os.sep).index("Recurrent-Parameter-Generation")+1])
sys.path.append(root)
os.chdir(root)
with open("./workspace/config.json", "r") as f:
    additional_config = json.load(f)
USE_WANDB = additional_config["use_wandb"]

# other
import math
import random
import warnings
from _thread import start_new_thread
warnings.filterwarnings("ignore", category=UserWarning)
if USE_WANDB: import wandb
# torch
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.cuda.amp import autocast
# model
from bitsandbytes import optim
from model import ClassConditionMambaDiffusion as Model
from model.diffusion import DDPMSampler, DDIMSampler
from torch.optim.lr_scheduler import CosineAnnealingLR, LinearLR, SequentialLR
from accelerate.utils import DistributedDataParallelKwargs
from accelerate.utils import AutocastKwargs
from accelerate import Accelerator
# dataset
from dataset import ClassInput_ViTTiny
from torch.utils.data import DataLoader


class ClassInput_ViTTiny_Dataset(ClassInput_ViTTiny):
    data_path = "./dataset/condition_classinput_inference/checkpoint_test"
    generated_path = "./workspace/classinput/generated.pth"
    test_command = f"python ./dataset/condition_classinput_inference/test.py "




config = {
    # dataset setting
    "dataset": None,
    "dim_per_token": 8192,
    "sequence_length": 'auto',
    # train setting
    "batch_size": 16,
    "num_workers": 16,
    "total_steps": 120000,
    "learning_rate": 0.00003,
    "weight_decay": 0.0,
    "save_every": 120000//50,
    "print_every": 50,
    "autocast": lambda i: 5000 < i < 90000,
    "checkpoint_save_path": "./checkpoint",
    # test setting
    "test_batch_size": 1,  # fixed, don't change this
    "generated_path": ClassInput_ViTTiny_Dataset.generated_path,
    "test_command": ClassInput_ViTTiny_Dataset.test_command,
    # to log
    "model_config": {
        "num_permutation": "auto",
        # mamba config
        "d_condition": 1024,
        "d_model": 8192,
        "d_state": 128,
        "d_conv": 4,
        "expand": 2,
        "num_layers": 2,
        # diffusion config
        "diffusion_batch": 512,
        "layer_channels": [1, 32, 64, 128, 64, 32, 1],
        "model_dim": "auto",
        "condition_dim": "auto",
        "kernel_size": 7,
        "sample_mode": DDPMSampler,
        "beta": (0.0001, 0.02),
        "T": 1000,
        "forward_once": True,
    },
    "tag": "generalization",
}




# Data
print('==> Preparing data..')
train_set = ClassInput_ViTTiny_Dataset(dim_per_token=config["dim_per_token"])
test_set = ClassInput_ViTTiny_Dataset(dim_per_token=config["dim_per_token"])
# sample = train_set[0][0]
print("checkpoint number:", train_set.real_length)
# print("input shape:", sample.shape)
# print("useful ratio:", torch.where(torch.isnan(sample), 0., 1.).mean())
# mask = torch.where(torch.isnan(sample), torch.nan, 1.)
if config["model_config"]["num_permutation"] == "auto":
    config["model_config"]["num_permutation"] = train_set.max_permutation_state
if config["model_config"]["condition_dim"] == "auto":
    config["model_config"]["condition_dim"] = config["model_config"]["d_model"]
if config["model_config"]["model_dim"] == "auto":
    config["model_config"]["model_dim"] = config["dim_per_token"]
if config["sequence_length"] == "auto":
    config["sequence_length"] = train_set.sequence_length
    print(f"sequence length: {config['sequence_length']}")
else:  # set fixed sequence_length
    assert train_set.sequence_length == config["sequence_length"], f"sequence_length={train_set.sequence_length}"
# train_loader = DataLoader(
#     dataset=train_set,
#     batch_size=config["batch_size"],
#     num_workers=config["num_workers"],
#     persistent_workers=True,
#     drop_last=True,
#     shuffle=True,
# )
#
# Model
print('==> Building model..')
Model.config = config["model_config"]
model = Model(
    sequence_length=config["sequence_length"],
    positional_embedding=train_set.get_position_embedding(
        positional_embedding_dim=config["model_config"]["d_model"],
    ),  # positional_embedding
)  # model setting is in model
#
# # Optimizer
# print('==> Building optimizer..')
# optimizer = optim.AdamW8bit(
#     params=model.parameters(),
#     lr=config["learning_rate"],
#     weight_decay=config["weight_decay"],
# )  # optimizer
# scheduler = CosineAnnealingLR(
#     optimizer=optimizer,
#     T_max=config["total_steps"],
# )  # scheduler
#
# # accelerator
# if __name__ == "__main__":
#     kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
#     accelerator = Accelerator(kwargs_handlers=[kwargs,])
#     model, optimizer, train_loader = accelerator.prepare(model, optimizer, train_loader)
#
#
# # wandb
# if __name__ == "__main__" and USE_WANDB and accelerator.is_main_process:
#     wandb.login(key=additional_config["wandb_api_key"])
#     wandb.init(project="Recurrent-Parameter-Generation", name=config['tag'], config=config,)




# Training
# print('==> Defining training..')
# def train():
#     if not USE_WANDB:
#         train_loss = 0
#         this_steps = 0
#     print("==> Start training..")
#     model.train()
#     for batch_idx, (param, condition) in enumerate(train_loader):
#         optimizer.zero_grad()
#         # train
#         # noinspection PyArgumentList
#         with accelerator.autocast(autocast_handler=AutocastKwargs(enabled=config["autocast"](batch_idx))):
#             loss = model(
#                 output_shape=param.shape,
#                 x_0=param,
#                 condition=condition,
#                 permutation_state=None,
#             )
#         accelerator.backward(loss)
#         optimizer.step()
#         if accelerator.is_main_process:
#             scheduler.step()
#         # to logging losses and print and save
#         if USE_WANDB and accelerator.is_main_process:
#             wandb.log({"train_loss": loss.item()})
#         elif USE_WANDB:
#             pass  # don't print
#         else:  # not use wandb
#             train_loss += loss.item()
#             this_steps += 1
#             if this_steps % config["print_every"] == 0:
#                 print('Loss: %.6f' % (train_loss/this_steps))
#                 this_steps = 0
#                 train_loss = 0
#         if batch_idx % config["save_every"] == 0 and accelerator.is_main_process:
#             os.makedirs(config["checkpoint_save_path"], exist_ok=True)
#             state = accelerator.unwrap_model(model).state_dict()
#             torch.save(state, os.path.join(config["checkpoint_save_path"],
#                                            f"{__file__.split('/')[-1].split('.')[0]}.pth"))
#             generate(save_path=config["generated_path"], need_test=True)
#         if batch_idx >= config["total_steps"]:
#             break


def generate(save_path=config["generated_path"], need_test=True):
    print("\n==> Generating..")
    model.eval()
    _, condition = test_set[random.randint(0, len(test_set)-1)]
    class_index = str(int("".join([str(int(i)) for i in condition]), 2)).zfill(4)
    with torch.no_grad():
        prediction = model(sample=True, condition=condition[None], permutation_state=False)
        generated_norm = torch.nanmean((prediction.cpu() * mask).abs())
    print("Generated_norm:", generated_norm.item())
    if USE_WANDB and accelerator.is_main_process:
        wandb.log({"generated_norm": generated_norm.item()})
    if accelerator.is_main_process:
        train_set.save_params(prediction, save_path=save_path.format(class_index))
    if need_test:
        start_new_thread(os.system, (config["test_command"].format(class_index),))
    model.train()
    return prediction




# if __name__ == '__main__':
#     train()
#     del train_loader  # deal problems by dataloader
#     print("Finished Training!")
#     exit(0)