from original import * import shutil, glob from easyfuncs import download_from_url, CachedModels import os os.makedirs("dataset", exist_ok=True) model_library = CachedModels() # Helper moved outside to avoid lambda issues in UI definition def get_audio_paths(path): if not os.path.exists(path): return [] return [os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')] with gr.Blocks(title="🔊", theme=gr.themes.Base(primary_hue="blue", neutral_hue="zinc")) as app: with gr.Tabs(): with gr.Tab("Inference"): with gr.Row(): # Get initial model choices from original.py initial_model_choices = sorted(names) if names else [] voice_model = gr.Dropdown( label="Model Voice", choices=initial_model_choices, value=initial_model_choices[0] if initial_model_choices else None, interactive=True ) refresh_button = gr.Button("Refresh", variant="primary") spk_item = gr.Slider( minimum=0, maximum=2333, step=1, label="Speaker ID", value=0, visible=False, interactive=True, ) vc_transform0 = gr.Number( label="Pitch", value=0 ) but0 = gr.Button(value="Convert", variant="primary") with gr.Row(): with gr.Column(): with gr.Row(): dropbox = gr.Audio(label="Drop your audio here & hit the Reload button.", type="filepath") with gr.Row(): record_button = gr.Audio(sources=["microphone"], label="OR Record audio.", type="filepath") with gr.Row(): input_audio0 = gr.Dropdown( label="Input Path", value=None, choices=[], allow_custom_value=True ) with gr.Row(): audio_player = gr.Audio() def update_audio_player(path): if path and os.path.exists(path): return path return None input_audio0.change( fn=update_audio_player, inputs=[input_audio0], outputs=[audio_player] ) def handle_record(audio): if audio: return audio return None record_button.change( fn=handle_record, inputs=[record_button], outputs=[input_audio0] ) def handle_upload(audio): if audio: return audio return None dropbox.change( fn=handle_upload, inputs=[dropbox], outputs=[input_audio0] ) with gr.Column(): with gr.Accordion("Change Index", open=False): file_index2 = gr.Dropdown( label="Change Index", choices=[], interactive=True, value=None ) index_rate1 = gr.Slider( minimum=0, maximum=1, label="Index Strength", value=0.5, interactive=True, ) vc_output2 = gr.Audio(label="Output") with gr.Accordion("General Settings", open=False): f0method0 = gr.Radio( label="Method", choices=["pm", "harvest", "crepe", "rmvpe"] if config.dml == False else ["pm", "harvest", "rmvpe"], value="rmvpe", interactive=True, ) filter_radius0 = gr.Slider( minimum=0, maximum=7, label="Breathiness Reduction (Harvest only)", value=3, step=1, interactive=True, ) resample_sr0 = gr.Slider( minimum=0, maximum=48000, label="Resample", value=0, step=1, interactive=True, visible=False ) rms_mix_rate0 = gr.Slider( minimum=0, maximum=1, label="Volume Normalization", value=0, interactive=True, ) protect0 = gr.Slider( minimum=0, maximum=0.5, label="Breathiness Protection (0 is enabled, 0.5 is disabled)", value=0.33, step=0.01, interactive=True, ) file_index1 = gr.Textbox( label="Index Path", interactive=True, visible=False ) # Consolidated refresh logic def refresh_ui(): # Get updated lists from change_choices which returns dictionaries try: model_result, index_result = change_choices() model_choices = model_result["choices"] index_choices = index_result["choices"] except Exception as e: print(f"Error in change_choices: {e}") model_choices = [] index_choices = [] audio_paths = get_audio_paths('audios') # Get current values to preserve selection when possible current_model = voice_model.value current_index = file_index2.value current_audio = input_audio0.value # Set defaults with fallback logic default_model = (current_model if current_model in model_choices else (model_choices[0] if model_choices else None)) default_index = (current_index if current_index in index_choices else (index_choices[0] if index_choices else None)) default_audio = (current_audio if current_audio in audio_paths else (audio_paths[0] if audio_paths else None)) return ( gr.update(choices=model_choices, value=default_model), # voice_model gr.update(choices=index_choices, value=default_index), # file_index2 gr.update(choices=audio_paths, value=default_audio) # input_audio0 ) refresh_button.click( fn=refresh_ui, inputs=[], outputs=[voice_model, file_index2, input_audio0], api_name="infer_refresh", ) with gr.Row(): f0_file = gr.File(label="F0 Path", visible=False) with gr.Row(): vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!", visible=False) but0.click( vc.vc_single, [ spk_item, input_audio0, vc_transform0, f0_file, f0method0, file_index1, file_index2, index_rate1, filter_radius0, resample_sr0, rms_mix_rate0, protect0, ], [vc_output1, vc_output2], api_name="infer_convert", ) voice_model.change( fn=vc.get_vc, inputs=[voice_model, protect0, protect0], outputs=[spk_item, protect0, protect0, file_index2, file_index2], api_name="infer_change_voice", ) with gr.Tab("Download Models"): with gr.Row(): url_input = gr.Textbox(label="URL to model", value="", placeholder="https://...", scale=6) name_output = gr.Textbox(label="Save as", value="", placeholder="MyModel", scale=2) url_download = gr.Button(value="Download Model", scale=2) url_download.click( inputs=[url_input, name_output], outputs=[url_input], fn=download_from_url, ) with gr.Row(): model_browser = gr.Dropdown(choices=list(model_library.models.keys()), label="OR Search Models (Quality UNKNOWN)", scale=5) download_from_browser = gr.Button(value="Get", scale=2) download_from_browser.click( inputs=[model_browser], outputs=[model_browser], fn=lambda model: download_from_url(model_library.models[model], model), ) with gr.Tab("Train"): with gr.Row(): with gr.Column(): training_name = gr.Textbox(label="Name your model", value="My-Voice", placeholder="My-Voice") np7 = gr.Slider( minimum=0, maximum=config.n_cpu, step=1, label="Number of CPU processes used to extract pitch features", value=int(np.ceil(config.n_cpu / 1.5)), interactive=True, ) sr2 = gr.Radio( label="Sampling Rate", choices=["40k", "32k"], value="32k", interactive=True, visible=False ) if_f0_3 = gr.Radio( label="Will your model be used for singing? If not, you can ignore this.", choices=[True, False], value=True, interactive=True, visible=False ) version19 = gr.Radio( label="Version", choices=["v1", "v2"], value="v2", interactive=True, visible=False, ) dataset_folder = gr.Textbox( label="dataset folder", value='dataset' ) easy_uploader = gr.File(label="Drop your audio files here", file_count="multiple", file_types=["audio"]) but1 = gr.Button("1. Process", variant="primary") info1 = gr.Textbox(label="Information", value="", visible=True) def handle_file_upload(files, folder): if not folder or folder.strip() == "": gr.Warning('Please enter a folder name for your dataset') return [] if not os.path.exists(folder): os.makedirs(folder, exist_ok=True) saved_files = [] for file_obj in files: if hasattr(file_obj, 'name'): # Handle Gradio file object filename = os.path.basename(file_obj.name) dest_path = os.path.join(folder, filename) shutil.copy2(file_obj.name, dest_path) saved_files.append(dest_path) elif isinstance(file_obj, str): # Handle string path filename = os.path.basename(file_obj) dest_path = os.path.join(folder, filename) shutil.copy2(file_obj, dest_path) saved_files.append(dest_path) return [] easy_uploader.upload( fn=handle_file_upload, inputs=[easy_uploader, dataset_folder], outputs=[] ) gpus6 = gr.Textbox( label="Enter the GPU numbers to use separated by -, (e.g. 0-1-2)", value=gpus, interactive=True, visible=F0GPUVisible, ) gpu_info9 = gr.Textbox( label="GPU Info", value=gpu_info, visible=F0GPUVisible ) spk_id5 = gr.Slider( minimum=0, maximum=4, step=1, label="Speaker ID", value=0, interactive=True, visible=False ) but1.click( preprocess_dataset, [dataset_folder, training_name, sr2, np7], [info1], api_name="train_preprocess", ) with gr.Column(): f0method8 = gr.Radio( label="F0 extraction method", choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"], value="rmvpe_gpu", interactive=True, ) gpus_rmvpe = gr.Textbox( label="GPU numbers to use separated by -, (e.g. 0-1-2)", value="%s-%s" % (gpus, gpus), interactive=True, visible=F0GPUVisible, ) but2 = gr.Button("2. Extract Features", variant="primary") info2 = gr.Textbox(label="Information", value="", max_lines=8) f0method8.change( fn=change_f0_method, inputs=[f0method8], outputs=[gpus_rmvpe], ) but2.click( extract_f0_feature, [ gpus6, np7, f0method8, if_f0_3, training_name, version19, gpus_rmvpe, ], [info2], api_name="train_extract_f0_feature", ) with gr.Column(): total_epoch11 = gr.Slider( minimum=2, maximum=1000, step=1, label="Epochs (more epochs may improve quality but takes longer)", value=150, interactive=True, ) but4 = gr.Button("3. Train Index", variant="primary") but3 = gr.Button("4. Train Model", variant="primary") info3 = gr.Textbox(label="Information", value="", max_lines=10) with gr.Accordion(label="General Settings", open=False): gpus16 = gr.Textbox( label="GPUs separated by -, (e.g. 0-1-2)", value="0", interactive=True, visible=True ) save_epoch10 = gr.Slider( minimum=1, maximum=50, step=1, label="Weight Saving Frequency", value=25, interactive=True, ) batch_size12 = gr.Slider( minimum=1, maximum=40, step=1, label="Batch Size", value=default_batch_size, interactive=True, ) if_save_latest13 = gr.Radio( label="Only save the latest model", choices=["yes", "no"], value="yes", interactive=True, visible=False ) if_cache_gpu17 = gr.Radio( label="If your dataset is UNDER 10 minutes, cache it to train faster", choices=["yes", "no"], value="no", interactive=True, ) if_save_every_weights18 = gr.Radio( label="Save small model at every save point", choices=["yes", "no"], value="yes", interactive=True, ) with gr.Accordion(label="Change pretrains", open=False): def get_pretrained_choices(sr, if_f0, version): # Use the original functions from original.py if version == "v1": path_str = "" else: path_str = "_v2" if if_f0: f0_str = "f0" else: f0_str = "" pretrained_G, pretrained_D = get_pretrained_models(path_str, f0_str, sr) return [pretrained_G] if pretrained_G else [], [pretrained_D] if pretrained_D else [] pretrained_G14 = gr.Dropdown( label="pretrained G", choices=[], value="", interactive=True, visible=True ) pretrained_D15 = gr.Dropdown( label="pretrained D", choices=[], value="", visible=True, interactive=True ) def update_pretrained_dropdowns(sr, if_f0, ver): sr_str = sr if isinstance(sr, str) else str(sr) g_choices, d_choices = get_pretrained_choices(sr_str, if_f0, ver) return ( gr.update(choices=g_choices, value=g_choices[0] if g_choices else ""), gr.update(choices=d_choices, value=d_choices[0] if d_choices else "") ) # Bind update function to changes sr2.change(fn=update_pretrained_dropdowns, inputs=[sr2, if_f0_3, version19], outputs=[pretrained_G14, pretrained_D15]) version19.change(fn=update_pretrained_dropdowns, inputs=[sr2, if_f0_3, version19], outputs=[pretrained_G14, pretrained_D15]) if_f0_3.change(fn=update_pretrained_dropdowns, inputs=[sr2, if_f0_3, version19], outputs=[pretrained_G14, pretrained_D15]) with gr.Row(): download_model = gr.Button('5.Download Model') with gr.Row(): model_files = gr.File(label='Your Model and Index file can be downloaded here:') def download_model_files(name): if not name or name.strip() == "": return [], "Please enter a model name" model_path = f'logs/{name}' index_pattern = f'logs/{name}/added_*.index' files = [] if os.path.exists(model_path): files.extend([os.path.join(model_path, f) for f in os.listdir(model_path) if f.endswith('.pth')]) files.extend(glob.glob(index_pattern)) return files, f"Found {len(files)} files" download_model.click( fn=download_model_files, inputs=[training_name], outputs=[model_files, info3] ) if_f0_3.change( fn=change_f0, inputs=[if_f0_3, sr2, version19], outputs=[f0method8, pretrained_G14, pretrained_D15], ) but5 = gr.Button("1 Click Training", variant="primary", visible=False) but3.click( click_train, [ training_name, sr2, if_f0_3, spk_id5, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17, if_save_every_weights18, version19, ], info3, api_name="train_start", ) but4.click(train_index, [training_name, version19], info3) but5.click( train1key, [ training_name, sr2, if_f0_3, dataset_folder, spk_id5, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17, if_save_every_weights18, version19, gpus_rmvpe, ], info3, api_name="train_start_all", ) # Populate UI on load def on_load(): # Initial refresh model_result, index_result = change_choices() audio_paths = get_audio_paths('audios') default_model = model_result["choices"][0] if model_result["choices"] else None default_index = index_result["choices"][0] if index_result["choices"] else None default_audio = audio_paths[0] if audio_paths else None return ( gr.update(choices=model_result["choices"], value=default_model), # voice_model gr.update(choices=index_result["choices"], value=default_index), # file_index2 gr.update(choices=audio_paths, value=default_audio) # input_audio0 ) app.load( fn=on_load, inputs=[], outputs=[voice_model, file_index2, input_audio0] ) if config.iscolab: app.launch(share=True, quiet=False) else: app.launch( server_name="0.0.0.0", inbrowser=not config.noautoopen, server_port=config.listen_port, quiet=True, )