Update README.md
Browse files
README.md
CHANGED
|
@@ -39,178 +39,98 @@ We introduce AceCoder, the first work to propose a fully automated pipeline for
|
|
| 39 |
- To use the RM to produce rewards, please apply the following example codes:
|
| 40 |
|
| 41 |
```python
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
from transformers import
|
| 45 |
-
class ValueHead(nn.Module):
|
| 46 |
-
r"""
|
| 47 |
-
The ValueHead class implements a head for GPT2 that returns a scalar for each output token.
|
| 48 |
-
"""
|
| 49 |
-
|
| 50 |
-
def __init__(self, config, **kwargs):
|
| 51 |
-
super().__init__()
|
| 52 |
-
if not hasattr(config, "summary_dropout_prob"):
|
| 53 |
-
summary_dropout_prob = kwargs.pop("summary_dropout_prob", 0.1)
|
| 54 |
-
else:
|
| 55 |
-
summary_dropout_prob = config.summary_dropout_prob
|
| 56 |
-
|
| 57 |
-
self.dropout = (
|
| 58 |
-
nn.Dropout(summary_dropout_prob) if summary_dropout_prob else nn.Identity()
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
# some models such as OPT have a projection layer before the word embeddings - e.g. OPT-350m
|
| 62 |
-
if hasattr(config, "hidden_size"):
|
| 63 |
-
hidden_size = config.hidden_size
|
| 64 |
-
if hasattr(config, "word_embed_proj_dim"):
|
| 65 |
-
hidden_size = config.word_embed_proj_dim
|
| 66 |
-
elif hasattr(config, "is_encoder_decoder"):
|
| 67 |
-
if config.is_encoder_decoder and hasattr(config, "decoder"):
|
| 68 |
-
if hasattr(config.decoder, "hidden_size"):
|
| 69 |
-
hidden_size = config.decoder.hidden_size
|
| 70 |
-
|
| 71 |
-
self.summary = nn.Linear(hidden_size, 1)
|
| 72 |
-
|
| 73 |
-
self.flatten = nn.Flatten()
|
| 74 |
-
|
| 75 |
-
def forward(self, hidden_states):
|
| 76 |
-
output = self.dropout(hidden_states)
|
| 77 |
-
|
| 78 |
-
# For now force upcast in fp32 if needed. Let's keep the
|
| 79 |
-
# output in fp32 for numerical stability.
|
| 80 |
-
if output.dtype != self.summary.weight.dtype:
|
| 81 |
-
output = output.to(self.summary.weight.dtype)
|
| 82 |
-
|
| 83 |
-
output = self.summary(output)
|
| 84 |
-
return output
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
class Qwen2ForCausalRM(Qwen2ForCausalLM):
|
| 88 |
-
def __init__(self, config):
|
| 89 |
-
super().__init__(config)
|
| 90 |
-
self.v_head = ValueHead(config)
|
| 91 |
-
|
| 92 |
-
def forward(
|
| 93 |
-
self,
|
| 94 |
-
input_ids=None,
|
| 95 |
-
past_key_values=None,
|
| 96 |
-
attention_mask=None,
|
| 97 |
-
return_past_key_values=False,
|
| 98 |
-
**kwargs,
|
| 99 |
-
):
|
| 100 |
-
r"""
|
| 101 |
-
Applies a forward pass to the wrapped model and returns the logits of the value head.
|
| 102 |
-
|
| 103 |
-
Args:
|
| 104 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 105 |
-
Indices of input sequence tokens in the vocabulary.
|
| 106 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, `optional`):
|
| 107 |
-
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
|
| 108 |
-
(see `past_key_values` input) to speed up sequential decoding.
|
| 109 |
-
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`):
|
| 110 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
| 111 |
-
- 1 for tokens that are **not masked**,
|
| 112 |
-
- 0 for tokens that are **masked**.
|
| 113 |
-
return_past_key_values (bool): A flag indicating if the computed hidden-states should be returned.
|
| 114 |
-
kwargs (`dict`, `optional`):
|
| 115 |
-
Additional keyword arguments, that are passed to the wrapped model.
|
| 116 |
-
"""
|
| 117 |
-
kwargs["output_hidden_states"] = (
|
| 118 |
-
True # this had already been set in the LORA / PEFT examples
|
| 119 |
-
)
|
| 120 |
-
kwargs["past_key_values"] = past_key_values
|
| 121 |
-
|
| 122 |
-
# if (
|
| 123 |
-
# self.is_peft_model
|
| 124 |
-
# and
|
| 125 |
-
# self.pretrained_model.active_peft_config.peft_type == "PREFIX_TUNING"
|
| 126 |
-
# ):
|
| 127 |
-
# kwargs.pop("past_key_values")
|
| 128 |
-
|
| 129 |
-
base_model_output = super().forward(
|
| 130 |
-
input_ids=input_ids,
|
| 131 |
-
attention_mask=attention_mask,
|
| 132 |
-
**kwargs,
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
last_hidden_state = base_model_output.hidden_states[-1]
|
| 136 |
-
lm_logits = base_model_output.logits
|
| 137 |
-
loss = base_model_output.loss
|
| 138 |
-
|
| 139 |
-
if last_hidden_state.device != self.v_head.summary.weight.device:
|
| 140 |
-
last_hidden_state = last_hidden_state.to(self.v_head.summary.weight.device)
|
| 141 |
-
|
| 142 |
-
value = self.v_head(last_hidden_state).squeeze(-1)
|
| 143 |
-
|
| 144 |
-
# force upcast in fp32 if logits are in half-precision
|
| 145 |
-
if lm_logits.dtype != torch.float32:
|
| 146 |
-
lm_logits = lm_logits.float()
|
| 147 |
-
|
| 148 |
-
if return_past_key_values:
|
| 149 |
-
return (lm_logits, loss, value, base_model_output.past_key_values)
|
| 150 |
-
else:
|
| 151 |
-
return (lm_logits, loss, value)
|
| 152 |
|
| 153 |
model_path = "TIGER-Lab/AceCodeRM-7B"
|
| 154 |
model = Qwen2ForCausalRM.from_pretrained(model_path, device_map="auto")
|
| 155 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
result = []
|
| 158 |
current_sum = 0
|
| 159 |
for num in nums:
|
| 160 |
current_sum += num
|
| 161 |
result.append(current_sum)
|
| 162 |
-
return result
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
{
|
| 179 |
-
"role": "assistant",
|
| 180 |
-
"content": program_correct,
|
| 181 |
-
},
|
| 182 |
-
],
|
| 183 |
-
[
|
| 184 |
-
{
|
| 185 |
-
"content": question,
|
| 186 |
-
"role": "user",
|
| 187 |
-
},
|
| 188 |
-
{
|
| 189 |
-
"role": "assistant",
|
| 190 |
-
"content": program_incorrect,
|
| 191 |
-
},
|
| 192 |
-
],
|
| 193 |
-
]
|
| 194 |
-
]
|
| 195 |
input_tokens = tokenizer.apply_chat_template(
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
|
|
|
| 202 |
_, _, values = model(
|
| 203 |
**input_tokens,
|
| 204 |
output_hidden_states=True,
|
| 205 |
return_dict=True,
|
| 206 |
-
use_cache=False,
|
| 207 |
)
|
| 208 |
masks = input_tokens["attention_mask"]
|
| 209 |
-
|
| 210 |
dim=-1, index=(masks.sum(dim=-1, keepdim=True) - 1)
|
| 211 |
) # find the last token (eos) in each sequence, a
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
```
|
| 215 |
|
| 216 |
|
|
|
|
| 39 |
- To use the RM to produce rewards, please apply the following example codes:
|
| 40 |
|
| 41 |
```python
|
| 42 |
+
"""pip install git+https://github.com/TIGER-AI-Lab/AceCoder"""
|
| 43 |
+
from acecoder import Qwen2ForCausalRM
|
| 44 |
+
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
model_path = "TIGER-Lab/AceCodeRM-7B"
|
| 47 |
model = Qwen2ForCausalRM.from_pretrained(model_path, device_map="auto")
|
| 48 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 49 |
+
|
| 50 |
+
question = """\
|
| 51 |
+
Given an array of numbers, write a function runningSum that returns an array where each element at index i is the sum of all elements from index 0 to i (inclusive).
|
| 52 |
+
For example:
|
| 53 |
+
Input: nums = [1,2,3,4]
|
| 54 |
+
Output: [1,3,6,10]
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
program_with_3_errors = """\
|
| 58 |
+
def runningSum(nums):
|
| 59 |
+
result = []
|
| 60 |
+
current_sum = 0
|
| 61 |
+
for i in range(1, len(nums)):
|
| 62 |
+
result.append(nums[i])
|
| 63 |
+
current_sum += nums[i]
|
| 64 |
+
return result
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
program_with_2_errors = """\
|
| 68 |
+
def runningSum(nums):
|
| 69 |
+
result = []
|
| 70 |
+
current_sum = 0
|
| 71 |
+
for i in range(0, len(nums)):
|
| 72 |
+
result.append(nums[i])
|
| 73 |
+
current_sum += nums[i]
|
| 74 |
+
return result
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
program_with_1_errors = """\
|
| 78 |
+
def runningSum(nums):
|
| 79 |
+
result = []
|
| 80 |
+
current_sum = 0
|
| 81 |
+
for i in range(0, len(nums)):
|
| 82 |
+
result.append(current_sum)
|
| 83 |
+
current_sum += nums[i]
|
| 84 |
+
return result
|
| 85 |
+
"""
|
| 86 |
+
program_correct = """\
|
| 87 |
+
def runningSum(nums):
|
| 88 |
result = []
|
| 89 |
current_sum = 0
|
| 90 |
for num in nums:
|
| 91 |
current_sum += num
|
| 92 |
result.append(current_sum)
|
| 93 |
+
return result
|
| 94 |
+
"""
|
| 95 |
+
|
| 96 |
+
program_chats = [
|
| 97 |
+
[
|
| 98 |
+
{
|
| 99 |
+
"content": question,
|
| 100 |
+
"role": "user",
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"role": "assistant",
|
| 104 |
+
"content": program
|
| 105 |
+
}
|
| 106 |
+
] for program in [program_with_3_errors, program_with_2_errors, program_with_1_errors, program_correct]
|
| 107 |
+
]
|
| 108 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
input_tokens = tokenizer.apply_chat_template(
|
| 110 |
+
program_chats,
|
| 111 |
+
tokenize=True,
|
| 112 |
+
return_dict=True,
|
| 113 |
+
padding=True,
|
| 114 |
+
return_tensors="pt",
|
| 115 |
+
).to(model.device)
|
| 116 |
+
|
| 117 |
_, _, values = model(
|
| 118 |
**input_tokens,
|
| 119 |
output_hidden_states=True,
|
| 120 |
return_dict=True,
|
| 121 |
+
use_cache=False,
|
| 122 |
)
|
| 123 |
masks = input_tokens["attention_mask"]
|
| 124 |
+
rm_scores = values.gather(
|
| 125 |
dim=-1, index=(masks.sum(dim=-1, keepdim=True) - 1)
|
| 126 |
) # find the last token (eos) in each sequence, a
|
| 127 |
+
rm_scores = rm_scores.squeeze()
|
| 128 |
+
|
| 129 |
+
print("RM Scores:", rm_scores)
|
| 130 |
+
print("Score of program with 3 errors:", rm_scores[0].item())
|
| 131 |
+
print("Score of program with 2 errors:", rm_scores[1].item())
|
| 132 |
+
print("Score of program with 1 errors:", rm_scores[2].item())
|
| 133 |
+
print("Score of correct program:", rm_scores[3].item())
|
| 134 |
```
|
| 135 |
|
| 136 |
|