Trinity-Nano-Preview / modeling_afmoe.py
bartowski's picture
Super-squash branch 'main' using huggingface_hub
889c8c4 verified
from typing import Callable, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from transformers.activations import ACT2FN
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import (
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel, ALL_ATTENTION_FUNCTIONS
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.masking_utils import (
create_causal_mask,
create_sliding_window_causal_mask,
)
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs
from transformers.cache_utils import Cache, DynamicCache
from transformers.integrations import use_kernel_forward_from_hub
try:
from .configuration_afmoe import AfmoeConfig
except:
from configuration_afmoe import AfmoeConfig
class AfmoeRotaryEmbedding(nn.Module):
def __init__(self, config: AfmoeConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float().to(x.device) @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
@use_kernel_forward_from_hub("RMSNorm")
class AfmoeRMSNorm(nn.Module):
def __init__(self, hidden_size: int, eps: float):
"""
AfmoeRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
query.dtype
)
attn_weights = nn.functional.dropout(
attn_weights, p=dropout, training=module.training
)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class AfmoeMLP(nn.Module):
def __init__(self, config, intermediate_size=None):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = intermediate_size or config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class AfmoeTokenChoiceRouter(nn.Module):
"""Token-choice top-K router for MoE routing."""
def __init__(self, config):
super().__init__()
self.config = config
self.top_k = config.num_experts_per_tok
self.num_experts = config.num_experts
self.score_func = config.score_func
self.route_norm = config.route_norm
self.route_scale = config.route_scale
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
def forward(self, hidden_states, expert_bias: torch.Tensor | None):
_, _, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
scores = self.gate(hidden_states)
# Apply scoring function in float32 for stability
if self.score_func == "sigmoid":
scores = torch.sigmoid(scores.to(torch.float32))
else:
scores = F.softmax(scores.to(torch.float32), dim=-1)
if expert_bias is not None:
_, selected_experts = torch.topk(scores + expert_bias, k=self.top_k, dim=1)
top_scores = scores.gather(dim=1, index=selected_experts)
else:
top_scores, selected_experts = torch.topk(scores, k=self.top_k, dim=1)
# Normalize weights if using sigmoid
if self.score_func == "sigmoid" and self.route_norm:
denominator = top_scores.sum(dim=-1, keepdim=True) + 1e-20
top_scores = top_scores / denominator
top_scores = top_scores * self.route_scale
return top_scores, selected_experts
class AfmoeMoE(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.router = AfmoeTokenChoiceRouter(config)
self.shared_experts = None
if config.num_shared_experts > 0:
self.shared_experts = AfmoeMLP(
config, config.moe_intermediate_size * config.num_shared_experts
)
self.experts = nn.ModuleList(
[AfmoeMLP(
config, intermediate_size=config.moe_intermediate_size
) for _ in range(config.num_experts)]
)
self.expert_bias = nn.Parameter(torch.zeros(config.num_experts, dtype=torch.float32), requires_grad=False)
def forward(self, hidden_states):
batch_size, seq_len, hidden_dim = hidden_states.shape
hidden_states_flat = hidden_states.view(-1, hidden_dim)
# Get routing decisions
top_scores, selected_experts = self.router(hidden_states, self.expert_bias)
# Process through shared experts
if self.shared_experts is not None:
shared_output = self.shared_experts(hidden_states_flat)
else:
shared_output = torch.zeros_like(hidden_states_flat)
# Reorder tokens by expert for efficient processing
token_indices_sorted = torch.argsort(selected_experts.view(-1), stable=True)
top_scores_sorted = top_scores.view(-1)[token_indices_sorted]
token_to_expert = selected_experts.view(-1)[token_indices_sorted]
token_indices_sorted = token_indices_sorted // self.config.num_experts_per_tok
# Gather input tokens
token_indices_expanded = token_indices_sorted.unsqueeze(-1).expand(
-1, hidden_dim
)
routed_input = torch.gather(
hidden_states_flat, dim=0, index=token_indices_expanded
)
routed_output = torch.zeros_like(routed_input)
for expert_id in range(self.config.num_experts):
mask = token_to_expert == expert_id
if mask.any():
expert_input = routed_input[mask]
expert_out = self.experts[expert_id](expert_input)
routed_output[mask] = expert_out
routed_output = (
routed_output.to(torch.float32) * top_scores_sorted.unsqueeze(-1)
).to(hidden_states.dtype)
# Scatter back to original positions
output = shared_output.scatter_add(
dim=0, index=token_indices_expanded, src=routed_output
)
return output.view(batch_size, seq_len, hidden_dim)
class AfmoeAttention(nn.Module):
"""Multi-headed attention with local/global pattern and gating."""
def __init__(self, config: AfmoeConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_heads = config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_local_attention = config.layer_types[layer_idx] == "sliding_attention"
self.sliding_window = config.sliding_window if self.is_local_attention else None
self.q_proj = nn.Linear(
config.hidden_size, self.num_heads * self.head_dim, bias=False
)
self.k_proj = nn.Linear(
config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
)
self.v_proj = nn.Linear(
config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
)
self.o_proj = nn.Linear(
self.num_heads * self.head_dim, config.hidden_size, bias=False
)
self.q_norm = AfmoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = AfmoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.gate_proj = nn.Linear(
config.hidden_size, self.num_heads * self.head_dim, bias=False
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> torch.Tensor:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape)
key_states = self.k_proj(hidden_states).view(hidden_shape)
value_states = self.v_proj(hidden_states).view(hidden_shape)
gate_states = self.gate_proj(hidden_states)
query_states = self.q_norm(query_states)
key_states = self.k_norm(key_states)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
if self.is_local_attention:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[
self.config._attn_implementation
]
output, _ = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask=attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window,
**kwargs,
)
output = output.view(*input_shape, -1).contiguous()
output = output * F.sigmoid(gate_states)
return self.o_proj(output)
class AfmoeDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: AfmoeConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.layer_idx = layer_idx
self.self_attn = AfmoeAttention(config=config, layer_idx=layer_idx)
self.attention_type = config.layer_types[layer_idx]
# Dual normalization for attention
self.input_layernorm = AfmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = AfmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# Dual normalization for FFN
self.pre_mlp_layernorm = AfmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_mlp_layernorm = AfmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# MoE or dense FFN
self.moe_enabled = layer_idx >= config.num_dense_layers
if self.moe_enabled:
self.mlp = AfmoeMoE(config)
else:
self.mlp = AfmoeMLP(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs: Unpack[TransformersKwargs],
) -> torch.FloatTensor:
residual = hidden_states
# Self Attention with dual normalization
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states
# FFN with dual normalization
residual = hidden_states
hidden_states = self.pre_mlp_layernorm(hidden_states)
if self.moe_enabled:
hidden_states = self.mlp(hidden_states)
else:
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_mlp_layernorm(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class AfmoePreTrainedModel(PreTrainedModel):
config_class = AfmoeConfig
base_model_prefix = "model"
_no_split_modules = ["AfmoeDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_keep_in_fp32_modules = [
"input_layernorm",
"post_attention_layernorm",
"pre_mlp_layernorm",
"post_mlp_layernorm",
"q_norm",
"k_norm",
"norm",
]
_supports_sdpa = True
_supports_attention_backend = True
supports_gradient_checkpointing = True
class AfmoeModel(AfmoePreTrainedModel):
_no_split_modules = ["AfmoeDecoderLayer"]
def __init__(self, config: AfmoeConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = nn.ModuleList(
[
AfmoeDecoderLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = AfmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = AfmoeRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[list[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> MoeModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You must specify exactly one of input_ids or inputs_embeds"
)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# It may already have been prepared by e.g. `generate`
if not isinstance(causal_mask_mapping := attention_mask, dict):
mask_kwargs = {
"config": self.config,
"input_embeds": inputs_embeds,
"attention_mask": attention_mask,
"cache_position": cache_position,
"past_key_values": past_key_values,
}
causal_mask_mapping = {
"full_attention": create_causal_mask(**mask_kwargs),
"sliding_attention": create_sliding_window_causal_mask(**mask_kwargs),
}
hidden_states = inputs_embeds
# Apply muP input scaling if enabled
if self.config.mup_enabled:
hidden_states = hidden_states * (self.config.hidden_size**0.5)
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.layers:
hidden_states = decoder_layer(
hidden_states,
attention_mask=causal_mask_mapping[decoder_layer.attention_type],
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
)
class AfmoeForCausalLM(AfmoePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = AfmoeModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
token_type_ids: Optional[torch.Tensor] = None, # will be ignored
**kwargs: Unpack[TransformersKwargs],
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
outputs: MoeModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits
slice_indices = (
slice(-logits_to_keep, None)
if isinstance(logits_to_keep, int)
else logits_to_keep
)
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
return MoeCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
__all__ = [
"AfmoeForCausalLM",
"AfmoeModel",
"AfmoePreTrainedModel",
]