Datasets:

Modalities:
Image
Text
Formats:
arrow
ArXiv:
Libraries:
Datasets
License:
sienna223 commited on
Commit
7dc4a0f
·
verified ·
1 Parent(s): c77fa76

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -28
README.md CHANGED
@@ -3,7 +3,7 @@ license: apache-2.0
3
  ---
4
 
5
  <p align="center">
6
- <img src="assets/logo.png" width="65%">
7
  </p>
8
 
9
  <p align="center">
@@ -11,6 +11,8 @@ license: apache-2.0
11
  <a href="https://arxiv.org/abs/2509.23909"><img src="https://img.shields.io/badge/arXiv%20paper-2509.23909-b31b1b.svg" alt="arxiv"></a>
12
  <a href="https://huggingface.co/collections/EditScore/editscore-68d8e27ee676981221db3cfe"><img src="https://img.shields.io/badge/EditScore-🤗-yellow" alt="model"></a>
13
  <a href="https://huggingface.co/datasets/EditScore/EditReward-Bench"><img src="https://img.shields.io/badge/EditReward--Bench-🤗-yellow" alt="dataset"></a>
 
 
14
  </p>
15
 
16
  <h4 align="center">
@@ -30,8 +32,11 @@ license: apache-2.0
30
  - **Versatile Applications**: Ready to use as a best-in-class reranker to improve editing outputs, or as a high-fidelity reward signal for **stable and effective Reinforcement Learning (RL) fine-tuning**.
31
 
32
  ## 🔥 News
33
- - **2025-09-30**: We release **OmniGen2-EditScore7B**, unlocking online RL For Image Editing via high-fidelity EditScore. LoRA weights are available at [Hugging Face](https://huggingface.co/OmniGen2/OmniGen2-EditScore7B) and [ModelScope](https://www.modelscope.cn/models/OmniGen2/OmniGen2-EditScore7B).
34
- - **2025-09-30**: We are excited to release **EditScore** and **EditReward-Bench**! Model weights and the benchmark dataset are now publicly available. You can access them on Hugging Face: [Models Collection](https://huggingface.co/collections/EditScore/editscore-68d8e27ee676981221db3cfe) and [Benchmark Dataset](https://huggingface.co/datasets/EditScore/EditReward-Bench), and on ModelScope: [Models Collection](https://www.modelscope.cn/collections/EditScore-8b0d53aa945d4e) and [Benchmark Dataset](https://www.modelscope.cn/datasets/EditScore/EditReward-Bench).
 
 
 
35
 
36
  ## 📖 Introduction
37
  While Reinforcement Learning (RL) holds immense potential for this domain, its progress has been severely hindered by the absence of a high-fidelity, efficient reward signal.
@@ -43,7 +48,7 @@ To overcome this barrier, we provide a systematic, two-part solution:
43
  - **A Powerful & Versatile Tool**: Guided by our benchmark, we developed the **EditScore** model series. Through meticulous data curation and an effective self-ensembling strategy, EditScore sets a new state of the art for open-source reward models, even surpassing the accuracy of leading proprietary VLMs.
44
 
45
  <p align="center">
46
- <img src="assets/table_reward_model_results.png" width="95%">
47
  <br>
48
  <em>Benchmark results on EditReward-Bench.</em>
49
  </p>
@@ -56,7 +61,7 @@ We demonstrate the practical utility of EditScore through two key applications:
56
  This repository releases both the **EditScore** models and the **EditReward-Bench** dataset to facilitate future research in reward modeling, policy optimization, and AI-driven model improvement.
57
 
58
  <p align="center">
59
- <img src="assets/figure_edit_results.png" width="95%">
60
  <br>
61
  <em>EditScore as a superior reward signal for image editing.</em>
62
  </p>
@@ -64,46 +69,61 @@ This repository releases both the **EditScore** models and the **EditReward-Benc
64
 
65
  ## 📌 TODO
66
  We are actively working on improving EditScore and expanding its capabilities. Here's what's next:
 
 
 
67
  - [ ] Release RL training code applying EditScore to OmniGen2.
68
- - [ ] Provide Best-of-N inference scripts for OmniGen2, Flux-dev-Kontext, and Qwen-Image-Edit.
69
 
70
  ## 🚀 Quick Start
71
 
72
  ### 🛠️ Environment Setup
 
 
 
73
 
74
- #### Recommended Setup
75
-
76
  ```bash
77
- # 1. Clone the repo
78
- git clone [email protected]:VectorSpaceLab/EditScore.git
79
- cd EditScore
80
-
81
- # 2. (Optional) Create a clean Python environment
82
  conda create -n editscore python=3.12
83
  conda activate editscore
84
 
85
- # 3. Install dependencies
86
- # 3.1 Install PyTorch (choose correct CUDA version)
87
  pip install torch==2.7.1 torchvision --extra-index-url https://download.pytorch.org/whl/cu126
 
88
 
89
- # 3.2 Install other required packages
90
- pip install -r requirements.txt
91
-
92
- # EditScore runs even without vllm, though we recommend install it for best performance.
93
- pip install vllm
94
  ```
 
95
 
96
- #### 🌏 For users in Mainland China
 
 
 
97
 
 
 
 
98
  ```bash
99
- # Install PyTorch from a domestic mirror
100
- pip install torch==2.7.1 torchvision --index-url https://mirror.sjtu.edu.cn/pytorch-wheels/cu126
 
101
 
102
- # Install other dependencies from Tsinghua mirror
103
- pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
 
 
104
 
105
- # EditScore runs even without vllm, though we recommend install it for best performance.
106
- pip install vllm -i https://pypi.tuna.tsinghua.edu.cn/simple
 
 
107
  ```
108
 
109
  ---
@@ -140,6 +160,12 @@ print(f"Edit Score: {result['final_score']}")
140
  ---
141
 
142
  ## 📊 Benchmark Your Image-Editing Reward Model
 
 
 
 
 
 
143
  We provide an evaluation script to benchmark reward models on **EditReward-Bench**. To evaluate your own custom reward model, simply create a scorer class with a similar interface and update the script.
144
  ```bash
145
  # This script will evaluate the default EditScore model on the benchmark
@@ -149,6 +175,13 @@ bash evaluate.sh
149
  bash evaluate_vllm.sh
150
  ```
151
 
 
 
 
 
 
 
 
152
  ## ❤️ Citing Us
153
  If you find this repository or our work useful, please consider giving a star ⭐ and citation 🦖, which would be greatly appreciated:
154
 
@@ -159,4 +192,4 @@ If you find this repository or our work useful, please consider giving a star
159
  journal={arXiv preprint arXiv:2509.23909},
160
  year={2025}
161
  }
162
- ```
 
3
  ---
4
 
5
  <p align="center">
6
+ <img src="https://raw.githubusercontent.com/VectorSpaceLab/EditScore/refs/heads/main/assets/logo.png" width="65%">
7
  </p>
8
 
9
  <p align="center">
 
11
  <a href="https://arxiv.org/abs/2509.23909"><img src="https://img.shields.io/badge/arXiv%20paper-2509.23909-b31b1b.svg" alt="arxiv"></a>
12
  <a href="https://huggingface.co/collections/EditScore/editscore-68d8e27ee676981221db3cfe"><img src="https://img.shields.io/badge/EditScore-🤗-yellow" alt="model"></a>
13
  <a href="https://huggingface.co/datasets/EditScore/EditReward-Bench"><img src="https://img.shields.io/badge/EditReward--Bench-🤗-yellow" alt="dataset"></a>
14
+ <a href="https://huggingface.co/datasets/EditScore/EditScore-Reward-Data"><img src="https://img.shields.io/badge/EditScore--Reward--Data-🤗-yellow" alt="dataset"></a>
15
+ <a href="https://huggingface.co/datasets/EditScore/EditScore-RL-Data"><img src="https://img.shields.io/badge/EditScore--RL--Data-🤗-yellow" alt="dataset"></a>
16
  </p>
17
 
18
  <h4 align="center">
 
32
  - **Versatile Applications**: Ready to use as a best-in-class reranker to improve editing outputs, or as a high-fidelity reward signal for **stable and effective Reinforcement Learning (RL) fine-tuning**.
33
 
34
  ## 🔥 News
35
+ - **2025-10-16**: Training datasets [EditScore-Reward-Data](https://huggingface.co/datasets/EditScore/EditScore-Reward-Data) and [EditScore-RL-Data](https://huggingface.co/datasets/EditScore/EditScore-RL-Data) are available.
36
+ - **2025-10-15**: **EditScore** is now available on PyPI install it easily with `pip install editscore`.
37
+ - **2025-10-15**: Best-of-N inference scripts for OmniGen2, Flux-dev-Kontext, and Qwen-Image-Edit are now available! See [this](#apply-editscore-to-image-editing) for details.
38
+ - 2025-09-30: We release **OmniGen2-EditScore7B**, unlocking online RL For Image Editing via high-fidelity EditScore. LoRA weights are available at [Hugging Face](https://huggingface.co/OmniGen2/OmniGen2-EditScore7B) and [ModelScope](https://www.modelscope.cn/models/OmniGen2/OmniGen2-EditScore7B).
39
+ - 2025-09-30: We are excited to release **EditScore** and **EditReward-Bench**! Model weights and the benchmark dataset are now publicly available. You can access them on Hugging Face: [Models Collection](https://huggingface.co/collections/EditScore/editscore-68d8e27ee676981221db3cfe) and [Benchmark Dataset](https://huggingface.co/datasets/EditScore/EditReward-Bench), and on ModelScope: [Models Collection](https://www.modelscope.cn/collections/EditScore-8b0d53aa945d4e) and [Benchmark Dataset](https://www.modelscope.cn/datasets/EditScore/EditReward-Bench).
40
 
41
  ## 📖 Introduction
42
  While Reinforcement Learning (RL) holds immense potential for this domain, its progress has been severely hindered by the absence of a high-fidelity, efficient reward signal.
 
48
  - **A Powerful & Versatile Tool**: Guided by our benchmark, we developed the **EditScore** model series. Through meticulous data curation and an effective self-ensembling strategy, EditScore sets a new state of the art for open-source reward models, even surpassing the accuracy of leading proprietary VLMs.
49
 
50
  <p align="center">
51
+ <img src="https://raw.githubusercontent.com/VectorSpaceLab/EditScore/refs/heads/main/assets/table_reward_model_results.png" width="95%">
52
  <br>
53
  <em>Benchmark results on EditReward-Bench.</em>
54
  </p>
 
61
  This repository releases both the **EditScore** models and the **EditReward-Bench** dataset to facilitate future research in reward modeling, policy optimization, and AI-driven model improvement.
62
 
63
  <p align="center">
64
+ <img src="https://raw.githubusercontent.com/VectorSpaceLab/EditScore/refs/heads/main/assets/figure_edit_results.png" width="95%">
65
  <br>
66
  <em>EditScore as a superior reward signal for image editing.</em>
67
  </p>
 
69
 
70
  ## 📌 TODO
71
  We are actively working on improving EditScore and expanding its capabilities. Here's what's next:
72
+
73
+
74
+ - [x] Release training data for reward model and online RL.
75
  - [ ] Release RL training code applying EditScore to OmniGen2.
76
+ - [x] Provide Best-of-N inference scripts for OmniGen2, Flux-dev-Kontext, and Qwen-Image-Edit.
77
 
78
  ## 🚀 Quick Start
79
 
80
  ### 🛠️ Environment Setup
81
+ We offer two ways to install EditScore. Choose the one that best fits your needs.
82
+ **Method 1: Install from PyPI (Recommended for Users)**: If you want to use EditScore as a library in your own project.
83
+ **Method 2: Install from Source (For Developers)**: If you plan to contribute to the code, modify it, or run the examples in this repository
84
 
85
+ #### Prerequisites: Installing PyTorch
86
+ Both installation methods require PyTorch to be installed first, as its version is dependent on your system's CUDA setup.
87
  ```bash
88
+ # (Optional) Create a clean Python environment
 
 
 
 
89
  conda create -n editscore python=3.12
90
  conda activate editscore
91
 
92
+ # Choose the command that matches your CUDA version.
93
+ # This example is for CUDA 12.6.
94
  pip install torch==2.7.1 torchvision --extra-index-url https://download.pytorch.org/whl/cu126
95
+ ````
96
 
97
+ <details>
98
+ <summary>🌏 For users in Mainland China</summary>
99
+ ```bash
100
+ # Install PyTorch from a domestic mirror
101
+ pip install torch==2.7.1 torchvision --index-url https://mirror.sjtu.edu.cn/pytorch-wheels/cu126
102
  ```
103
+ </details>
104
 
105
+ #### Method 1: Install from PyPI (Recommended for Users)
106
+ ```bash
107
+ pip install -U editscore
108
+ ```
109
 
110
+ #### Method 2: Install from Source (For Developers)
111
+ This method gives you a local, editable version of the project.
112
+ 1. Clone the repository
113
  ```bash
114
+ git clone https://github.com/VectorSpaceLab/EditScore.git
115
+ cd EditScore
116
+ ```
117
 
118
+ 2. Install EditScore in editable mode
119
+ ```bash
120
+ pip install -e .
121
+ ```
122
 
123
+ #### (Recommended) Install Optional High-Performance Dependencies
124
+ For the best performance, especially during inference, we highly recommend installing vllm.
125
+ ```bash
126
+ pip install vllm
127
  ```
128
 
129
  ---
 
160
  ---
161
 
162
  ## 📊 Benchmark Your Image-Editing Reward Model
163
+ #### Install benchmark dependencies
164
+ To use example code for benchmark, run following
165
+ ```bash
166
+ pip install -r requirements.txt
167
+ ```
168
+
169
  We provide an evaluation script to benchmark reward models on **EditReward-Bench**. To evaluate your own custom reward model, simply create a scorer class with a similar interface and update the script.
170
  ```bash
171
  # This script will evaluate the default EditScore model on the benchmark
 
175
  bash evaluate_vllm.sh
176
  ```
177
 
178
+ ## Apply EditScore to Image Editing
179
+ We offer two example use cases for your exploration:
180
+ - **Best-of-N selection**: Use EditScore to automatically pick the most preferred image among multiple candidates.
181
+ - **Reinforcement fine-tuning**: Use EditScore as a reward model to guide RL-based optimization.
182
+
183
+ For detailed instructions and examples, please refer to the [documentation](examples/OmniGen2-RL/README.md).
184
+
185
  ## ❤️ Citing Us
186
  If you find this repository or our work useful, please consider giving a star ⭐ and citation 🦖, which would be greatly appreciated:
187
 
 
192
  journal={arXiv preprint arXiv:2509.23909},
193
  year={2025}
194
  }
195
+ ```