Datasets:
video_id
stringlengths 19
35
| video_key
stringlengths 13
22
| category
stringclasses 13
values | features_shape
listlengths 2
2
| labels_shape
listlengths 1
1
| duration
float64 3.47
4.73k
| split
stringclasses 3
values | num_anomaly_segments
int64 1
177
| has_sentences
bool 1
class |
|---|---|---|---|---|---|---|---|---|
normal/Normal_Videos_439_x264
|
Normal_Videos_439_x264
|
normal
|
[
7,
1024
] |
[
7
] | 140.9
|
Train
| 3
| true
|
normal/Normal_Videos_345_x264
|
Normal_Videos_345_x264
|
normal
|
[
7,
1024
] |
[
7
] | 7.04
|
Train
| 2
| true
|
normal/Normal_Videos_704_x264
|
Normal_Videos_704_x264
|
normal
|
[
7,
1024
] |
[
7
] | 56.48
|
Train
| 3
| true
|
normal/Normal_Videos_452_x264
|
Normal_Videos_452_x264
|
normal
|
[
7,
1024
] |
[
7
] | 14.84
|
Train
| 1
| true
|
normal/Normal_Videos_576_x264
|
Normal_Videos_576_x264
|
normal
|
[
7,
1024
] |
[
7
] | 375.89
|
Train
| 6
| true
|
normal/Normal_Videos_877_x264
|
Normal_Videos_877_x264
|
normal
|
[
7,
1024
] |
[
7
] | 334.18
|
Train
| 23
| true
|
normal/Normal_Videos_015_x264
|
Normal_Videos_015_x264
|
normal
|
[
7,
1024
] |
[
7
] | 16.05
|
Train
| 4
| true
|
normal/Normal_Videos_603_x264
|
Normal_Videos_603_x264
|
normal
|
[
7,
1024
] |
[
7
] | 109.27
|
Train
| 6
| true
|
normal/Normal_Videos_621_x264
|
Normal_Videos_621_x264
|
normal
|
[
7,
1024
] |
[
7
] | 160.08
|
Train
| 7
| true
|
normal/Normal_Videos_453_x264
|
Normal_Videos_453_x264
|
normal
|
[
7,
1024
] |
[
7
] | 177.42
|
Train
| 5
| true
|
normal/Normal_Videos_758_x264
|
Normal_Videos_758_x264
|
normal
|
[
7,
1024
] |
[
7
] | 53
|
Train
| 2
| true
|
normal/Normal_Videos_246_x264
|
Normal_Videos_246_x264
|
normal
|
[
7,
1024
] |
[
7
] | 166.46
|
Train
| 1
| true
|
normal/Normal_Videos_634_x264
|
Normal_Videos_634_x264
|
normal
|
[
7,
1024
] |
[
7
] | 448.68
|
Train
| 7
| true
|
normal/Normal_Videos_913_x264
|
Normal_Videos_913_x264
|
normal
|
[
7,
1024
] |
[
7
] | 20.3
|
Train
| 2
| true
|
normal/Normal_Videos_656_x264
|
Normal_Videos_656_x264
|
normal
|
[
7,
1024
] |
[
7
] | 60.56
|
Train
| 2
| true
|
normal/Normal_Videos_360_x264
|
Normal_Videos_360_x264
|
normal
|
[
7,
1024
] |
[
7
] | 32.83
|
Train
| 7
| true
|
normal/Normal_Videos_798_x264
|
Normal_Videos_798_x264
|
normal
|
[
7,
1024
] |
[
7
] | 200.03
|
Train
| 9
| true
|
normal/Normal_Videos_905_x264
|
Normal_Videos_905_x264
|
normal
|
[
7,
1024
] |
[
7
] | 39.87
|
Train
| 4
| true
|
normal/Normal_Videos_100_x264
|
Normal_Videos_100_x264
|
normal
|
[
7,
1024
] |
[
7
] | 20.95
|
Train
| 1
| true
|
normal/Normal_Videos_914_x264
|
Normal_Videos_914_x264
|
normal
|
[
7,
1024
] |
[
7
] | 29.33
|
Train
| 2
| true
|
normal/Normal_Videos_310_x264
|
Normal_Videos_310_x264
|
normal
|
[
7,
1024
] |
[
7
] | 83.99
|
Train
| 3
| true
|
normal/Normal_Videos_317_x264
|
Normal_Videos_317_x264
|
normal
|
[
7,
1024
] |
[
7
] | 30.97
|
Train
| 3
| true
|
normal/Normal_Videos_885_x264
|
Normal_Videos_885_x264
|
normal
|
[
7,
1024
] |
[
7
] | 15.88
|
Train
| 2
| true
|
normal/Normal_Videos_828_x264
|
Normal_Videos_828_x264
|
normal
|
[
7,
1024
] |
[
7
] | 31.05
|
Train
| 2
| true
|
normal/Normal_Videos_892_x264
|
Normal_Videos_892_x264
|
normal
|
[
7,
1024
] |
[
7
] | 59.03
|
Train
| 4
| true
|
normal/Normal_Videos_696_x264
|
Normal_Videos_696_x264
|
normal
|
[
7,
1024
] |
[
7
] | 120.86
|
Train
| 5
| true
|
normal/Normal_Videos_781_x264
|
Normal_Videos_781_x264
|
normal
|
[
7,
1024
] |
[
7
] | 132.56
|
Train
| 8
| true
|
normal/Normal_Videos_929_x264
|
Normal_Videos_929_x264
|
normal
|
[
7,
1024
] |
[
7
] | 30.92
|
Test
| 3
| true
|
normal/Normal_Videos_831_x264
|
Normal_Videos_831_x264
|
normal
|
[
7,
1024
] |
[
7
] | 14.98
|
Train
| 1
| true
|
normal/Normal_Videos_641_x264
|
Normal_Videos_641_x264
|
normal
|
[
7,
1024
] |
[
7
] | 120.23
|
Train
| 9
| true
|
normal/Normal_Videos_050_x264
|
Normal_Videos_050_x264
|
normal
|
[
7,
1024
] |
[
7
] | 139.95
|
Train
| 10
| true
|
normal/Normal_Videos_129_x264
|
Normal_Videos_129_x264
|
normal
|
[
7,
1024
] |
[
7
] | 15.57
|
Train
| 1
| true
|
normal/Normal_Videos_247_x264
|
Normal_Videos_247_x264
|
normal
|
[
7,
1024
] |
[
7
] | 273.74
|
Train
| 1
| true
|
normal/Normal_Videos_745_x264
|
Normal_Videos_745_x264
|
normal
|
[
7,
1024
] |
[
7
] | 10.17
|
Train
| 2
| true
|
normal/Normal_Videos_606_x264
|
Normal_Videos_606_x264
|
normal
|
[
7,
1024
] |
[
7
] | 41.15
|
Train
| 5
| true
|
normal/Normal_Videos_722_x264
|
Normal_Videos_722_x264
|
normal
|
[
7,
1024
] |
[
7
] | 291.04
|
Train
| 5
| true
|
normal/Normal_Videos_150_x264
|
Normal_Videos_150_x264
|
normal
|
[
7,
1024
] |
[
7
] | 28.84
|
Train
| 3
| true
|
normal/Normal_Videos_597_x264
|
Normal_Videos_597_x264
|
normal
|
[
7,
1024
] |
[
7
] | 74.35
|
Train
| 8
| true
|
normal/Normal_Videos_365_x264
|
Normal_Videos_365_x264
|
normal
|
[
7,
1024
] |
[
7
] | 220.96
|
Train
| 7
| true
|
normal/Normal_Videos_352_x264
|
Normal_Videos_352_x264
|
normal
|
[
7,
1024
] |
[
7
] | 180.14
|
Train
| 6
| true
|
normal/Normal_Videos_401_x264
|
Normal_Videos_401_x264
|
normal
|
[
7,
1024
] |
[
7
] | 54.24
|
Train
| 3
| true
|
normal/Normal_Videos_912_x264
|
Normal_Videos_912_x264
|
normal
|
[
7,
1024
] |
[
7
] | 24.87
|
Train
| 1
| true
|
normal/Normal_Videos_478_x264
|
Normal_Videos_478_x264
|
normal
|
[
7,
1024
] |
[
7
] | 150.07
|
Train
| 3
| true
|
normal/Normal_Videos_289_x264
|
Normal_Videos_289_x264
|
normal
|
[
7,
1024
] |
[
7
] | 28.8
|
Train
| 2
| true
|
normal/Normal_Videos_801_x264
|
Normal_Videos_801_x264
|
normal
|
[
7,
1024
] |
[
7
] | 91.49
|
Train
| 9
| true
|
normal/Normal_Videos_248_x264
|
Normal_Videos_248_x264
|
normal
|
[
7,
1024
] |
[
7
] | 38.04
|
Train
| 2
| true
|
normal/Normal_Videos_312_x264
|
Normal_Videos_312_x264
|
normal
|
[
7,
1024
] |
[
7
] | 42.03
|
Train
| 7
| true
|
normal/Normal_Videos_881_x264
|
Normal_Videos_881_x264
|
normal
|
[
7,
1024
] |
[
7
] | 7.63
|
Train
| 1
| true
|
normal/Normal_Videos_251_x264
|
Normal_Videos_251_x264
|
normal
|
[
7,
1024
] |
[
7
] | 13.53
|
Train
| 2
| true
|
stealing/Stealing071_x264
|
Stealing071_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 32.07
|
Train
| 3
| true
|
stealing/Stealing091_x264
|
Stealing091_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 20.16
|
Test
| 4
| true
|
stealing/Stealing031_x264
|
Stealing031_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 36.27
|
Train
| 4
| true
|
stealing/Stealing101_x264
|
Stealing101_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 84.82
|
Val
| 6
| true
|
stealing/Stealing035_x264
|
Stealing035_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 371.85
|
Train
| 6
| true
|
stealing/Stealing042_x264
|
Stealing042_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 140.09
|
Train
| 9
| true
|
stealing/Stealing079_x264
|
Stealing079_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 195.06
|
Test
| 28
| true
|
stealing/Stealing100_x264
|
Stealing100_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 511.91
|
Val
| 39
| true
|
stealing/Stealing050_x264
|
Stealing050_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 111.63
|
Train
| 3
| true
|
stealing/Stealing072_x264
|
Stealing072_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 387.21
|
Train
| 11
| true
|
stealing/Stealing070_x264
|
Stealing070_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 44.93
|
Train
| 4
| true
|
stealing/Stealing081_x264
|
Stealing081_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 42.01
|
Test
| 6
| true
|
stealing/Stealing114_x264
|
Stealing114_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 40.57
|
Val
| 4
| true
|
stealing/Stealing010_x264
|
Stealing010_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 101.1
|
Train
| 9
| true
|
stealing/Stealing109_x264
|
Stealing109_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 315.14
|
Val
| 14
| true
|
stealing/Stealing029_x264
|
Stealing029_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 13.58
|
Train
| 3
| true
|
stealing/Stealing020_x264
|
Stealing020_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 220.13
|
Train
| 16
| true
|
stealing/Stealing054_x264
|
Stealing054_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 88.98
|
Train
| 5
| true
|
stealing/Stealing111_x264
|
Stealing111_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 157.07
|
Val
| 6
| true
|
stealing/Stealing110_x264
|
Stealing110_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 58.4
|
Val
| 4
| true
|
stealing/Stealing073_x264
|
Stealing073_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 50.84
|
Train
| 3
| true
|
stealing/Stealing058_x264
|
Stealing058_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 166.39
|
Train
| 5
| true
|
stealing/Stealing012_x264
|
Stealing012_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 90.43
|
Train
| 7
| true
|
stealing/Stealing015_x264
|
Stealing015_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 60
|
Train
| 5
| true
|
stealing/Stealing024_x264
|
Stealing024_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 82.2
|
Train
| 4
| true
|
stealing/Stealing068_x264
|
Stealing068_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 228.67
|
Train
| 6
| true
|
stealing/Stealing078_x264
|
Stealing078_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 86.23
|
Test
| 7
| true
|
stealing/Stealing009_x264
|
Stealing009_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 53.8
|
Train
| 5
| true
|
stealing/Stealing067_x264
|
Stealing067_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 70
|
Train
| 4
| true
|
stealing/Stealing046_x264
|
Stealing046_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 343.6
|
Train
| 4
| true
|
stealing/Stealing069_x264
|
Stealing069_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 26.73
|
Train
| 3
| true
|
stealing/Stealing002_x264
|
Stealing002_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 117.23
|
Train
| 11
| true
|
stealing/Stealing025_x264
|
Stealing025_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 727.24
|
Train
| 48
| true
|
stealing/Stealing011_x264
|
Stealing011_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 123.9
|
Train
| 12
| true
|
stealing/Stealing018_x264
|
Stealing018_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 68.4
|
Train
| 7
| true
|
stealing/Stealing066_x264
|
Stealing066_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 42.72
|
Train
| 3
| true
|
stealing/Stealing095_x264
|
Stealing095_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 25.07
|
Val
| 2
| true
|
stealing/Stealing051_x264
|
Stealing051_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 111.04
|
Train
| 6
| true
|
stealing/Stealing047_x264
|
Stealing047_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 45.12
|
Train
| 3
| true
|
stealing/Stealing104_x264
|
Stealing104_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 105.09
|
Val
| 11
| true
|
stealing/Stealing013_x264
|
Stealing013_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 308.37
|
Train
| 13
| true
|
stealing/Stealing112_x264
|
Stealing112_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 70.05
|
Val
| 6
| true
|
stealing/Stealing049_x264
|
Stealing049_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 49.23
|
Train
| 2
| true
|
stealing/Stealing087_x264
|
Stealing087_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 164.7
|
Test
| 26
| true
|
stealing/Stealing084_x264
|
Stealing084_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 524.46
|
Test
| 31
| true
|
stealing/Stealing059_x264
|
Stealing059_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 74.52
|
Train
| 4
| true
|
stealing/Stealing106_x264
|
Stealing106_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 47.76
|
Val
| 5
| true
|
stealing/Stealing053_x264
|
Stealing053_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 435.26
|
Train
| 10
| true
|
stealing/Stealing108_x264
|
Stealing108_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 132.23
|
Val
| 9
| true
|
stealing/Stealing023_x264
|
Stealing023_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 169.17
|
Train
| 12
| true
|
stealing/Stealing093_x264
|
Stealing093_x264
|
stealing
|
[
7,
1024
] |
[
7
] | 41.04
|
Val
| 4
| true
|
End of preview. Expand
in Data Studio
UCF-Crime: Precomputed I3D Features with Temporal Annotations
This dataset provides pre-extracted 1024-dimensional I3D RGB features along with frame-level temporal anomaly labels for videos from the UCF-Crime dataset.
Dataset Characteristics
Features
- 1024-dimensional I3D RGB feature vectors
- Extracted from 64 uniformly sampled frames per video
- Feature tensor shape: [64, 1024]
Temporal Annotations
- Mapped from original anomaly intervals
- Re-scaled to match the 64 sampled frames
- Only videos with valid annotations are included
Coverage
- Videos that contain complete temporal anomaly intervals
- Suitable for supervised learning tasks
Recommended Usage
This dataset is ideal for:
- Frame-level binary classification
- Reconstruction-based anomaly detection
- Temporal convolutional networks (TCN)
- Transformer-based sequence models
- Sequential anomaly scoring models
Since features are already extracted, experiments are lightweight and GPU-efficient.
Loading the Dataset
The Data Loader code has also been provided. Please refer to that.
Citation
@inproceedings{sultani2018real, title={Real-world Anomaly Detection in Surveillance Videos}, author={Sultani, Waqas and Chen, Chen and Shah, Mubarak}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={4469--4478}, year={2018} }
- Downloads last month
- 50