Datasets:

ArXiv:
File size: 9,325 Bytes
9f3bc09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import re, time, os
from tqdm import tqdm
import json
from datetime import datetime
import argparse
import Levenshtein

from base_agent import BaseAgent_SFT, BaseAgent_Open
from system_prompts import sys_prompts
from tools import ToolCalling
from vbench_leaderboard import VBenchLeaderboard
import pandas as pd
from process import *



def parse_args():
    parser = argparse.ArgumentParser(description='Eval-Agent-VBench', formatter_class=argparse.RawTextHelpFormatter)

    parser.add_argument(
        "--user_query",
        type=str,
        required=True,
        help="user query",
    )
    parser.add_argument(
        "--model",
        type=str,
        default="latte1",
        help="target model",
    )
    parser.add_argument(
        "--recommend",
        action="store_true",
        help="recommend model",
    )

    args = parser.parse_args()
    return args


class EvalAgent:
    def __init__(self, sample_model="latte1", save_mode="video", refer_file="vbench_dimension_scores.tsv", recommend=False):
        self.tools = ToolCalling(sample_model=sample_model, save_mode=save_mode)
        self.sample_model = sample_model
        self.user_query = ""
        self.tsv_file_path = refer_file
        self.recommend = recommend
        
    def init_agent(self):
        self.eval_agent = BaseAgent_SFT(system_prompt=sys_prompts["eval-agent-vbench-training-sys"], use_history=True, temp=0.5)
        # self.prompt_agent = BaseAgent_Open(system_prompt=sys_prompts["vbench-prompt-sys"], use_history=True, temp=0.5)
        self.prompt_agent = BaseAgent_SFT(system_prompt=sys_prompts["vbench-prompt-sys-open"], use_history=True, temp=0.5, model_name_or_path="http://0.0.0.0:12334/v1/chat/completions")


    def recommend_model(self, query):
        leaderboard = VBenchLeaderboard()
        recommendations = leaderboard.recommend_model(query, top_k=3)
        report = leaderboard.generate_recommendation_report(query, recommendations)
        return report
    
    def search_auxiliary(self, designed_prompts, prompt):
        for _, value in designed_prompts.items():
            if value['prompt'] == prompt:
                return value["auxiliary_info"]
        raise "Didn't find auxiliary info, please check your json."

    def sample_and_eval(self, designed_prompts, save_path, tool_name):
        try:
            prompts = [item["prompt"] for _, item in designed_prompts.items()]
        except:
            designed_prompts = parse_json(designed_prompts)
            if isinstance(designed_prompts, list):
                prompts = [item["prompt"] for item in designed_prompts]
            else:
                prompts = [item["prompt"] for _, item in designed_prompts.items()]
        
        video_pairs = self.tools.sample(prompts, save_path)
        if 'auxiliary_info' in designed_prompts["Step 1"]:
            for item in video_pairs:
                item["auxiliary_info"] = self.search_auxiliary(designed_prompts, item["prompt"])
        
        eval_results = self.tools.eval(tool_name, video_pairs)
        return eval_results


    def reference_prompt(self, search_dim):
        file_path = "./eval_tools/vbench/VBench_full_info.json"
        data = json.load(open(file_path, "r"))

        results = []
        for item in data:
            if search_dim in item["dimension"]:
                item.pop("dimension")
                item["Prompt"] = item.pop("prompt_en")
                if 'auxiliary_info' in item and search_dim in item['auxiliary_info']:
                    item["auxiliary_info"] = list(item["auxiliary_info"][search_dim].values())[0]
                results.append(item)
        
        return results



    # def format_eval_result(self, results, reference_table):
    #     question = results["Sub-aspect"]
    #     tool_name = results["Tool"]
    #     average_score = results["eval_results"]["score"][0]
    #     video_results = results["eval_results"]["score"][1]
        
        
    #     output = f"Sub-aspect: {question}\n"
    #     output += f"The score categorization table for the numerical results evaluated by the '{tool_name}' is as follows:\n{reference_table}\n\n"
    #     output += f"Observation: The evaluation results using '{tool_name}' are summarized below.\n"
    #     output += f"Average Score: {average_score:.4f}\n"
    #     output += "Detailed Results:\n"

    #     for i, video in enumerate(video_results, 1):
    #         prompt = video["prompt"]
    #         score = video["video_results"]
    #         output += f"\t{i}. Prompt: {prompt}\n"
    #         output += f"\tScore: {score:.4f}\n"
        
    #     return output
    def format_eval_results(self, results, reference_table):
        tool_name = results["tool"]
        average_score = results["eval_results"]["score"][0]
        video_results = results["eval_results"]["score"][1]
        

        # More concise and structured format for SFT
        output = f"Scoring Reference Table of '{tool_name}': {reference_table}\n\n"
        output += f"Results:\n"
        output += f"- Overall score: {average_score:.4f}\n"
        output += f"- Per-prompt scores:\n"

        for video in video_results:
            prompt = video["prompt"]
            score = video["video_results"]
            output += f"  • \"{prompt}\": {score:.4f}\n"
        
        return output


    def update_info(self):
        # folder_name = datetime.now().strftime('%Y-%m-%d-%H:%M:%S') + "-" + self.user_query.replace(" ", "_")
        folder_name = os.environ["FOLDER_NAME"] if "FOLDER_NAME" in os.environ else datetime.now().strftime('%Y-%m-%d-%H:%M:%S') + "-" + self.user_query.replace(" ", "_")  # the environment folder name categorizes model into different rounds
        self.save_path = f"./eval_vbench_results/{self.sample_model}/{folder_name}"
        os.makedirs(self.save_path, exist_ok=True)
        
        self.video_folder = os.path.join(self.save_path, "videos")
        self.file_name = os.path.join(self.save_path, f"eval_results.json")



    def explore(self, query, all_chat=[]):
        
        self.user_query = query
        self.update_info()
        self.init_agent()
        df = pd.read_csv(self.tsv_file_path, sep='\t')

        plan_query = query
        all_chat.append(plan_query)
        
        n = 0
        
        start_time = time.time()
        while True:
            plans_str = self.eval_agent(plan_query)
            plans = format_plans(plans_str)
            
            if '</summary>' in plans_str:
                print(f"Finish! Time: {time.time() - start_time:.2f}s")
                plans["eval_time"] = time.time() - start_time
                
                if self.recommend:
                    print("Generating recommendation report...")
                    report = self.recommend_model(query)
                    plans["recommendation_report"] = report
                    print(f"\nQuery: {query}")
                    print("-" * 40)
                    print(report)
                    print("\n" + "="*80)
                
                all_chat.append(plans)
                break
            
            for _ in range(3):
                try:
                    tool = plans.get('tool', None)
                    if tool and tool_existence(tool):
                        plans["tool"] = tool_existence(tool)
                        break
                    else:
                        # If tool does not exist, regenerate plan_str
                        plans_str = self.eval_agent(plan_query)
                        plans = format_plans(plans_str)
                except Exception as e:
                    # Safe error message that doesn't assume 'tool' key exists
                    tool_name = plans.get("tool", "UNKNOWN")
                    print(f"❌ Tool '{tool_name}' not found or not valid.")
                    print(f"Generated plan: {plans_str[:200]}...")
                    print(f"Parsed result: {plans}")
                    print(f"Error: {e}")
                    continue  # Try again
            
            # tool_name_ori = plans["tool"]
            # reference_table = format_dimension_as_string(df, tool_name_ori)
            reference_table = format_dimension_as_string(df, plans["tool"])
            
            # tool_name = tool_name_ori.replace(" ", "_").lower() # Subject Consistency -> subject_consistency
            prompt_list = self.reference_prompt(plans["tool"])
            prompt_query = f"## Context:\n{json.dumps(plans)}\n\n ## Prompt list:\n{json.dumps(prompt_list)}"
            
            designed_prompts = self.prompt_agent(prompt_query)
            
            plans["eval_results"] = self.sample_and_eval(designed_prompts, self.video_folder, plans["tool"])

            plan_query = self.format_eval_results(plans, reference_table=reference_table) # NEW plan query, simpler

            all_chat.append(plans)
            
            if n > 9:
                break
            n += 1


        all_chat.append(self.eval_agent.messages)
        save_json(all_chat, self.file_name)


def main():
    args = parse_args()
    user_query = args.user_query
    eval_agent = EvalAgent(sample_model=args.model, save_mode="video", recommend=args.recommend)
    eval_agent.explore(user_query)


if __name__ == "__main__":
    main()