Datasets:
File size: 2,481 Bytes
c9a9213 d990783 c9a9213 d990783 87b00f9 d1d4fe3 87b00f9 d1d4fe3 87b00f9 d990783 5965b5f d990783 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: cc-by-sa-3.0
language:
- de
- en
tags:
- sentence-transformers
pretty_name: Natural Questions (German)
task_categories:
- feature-extraction
- sentence-similarity
size_categories:
- 100K<n<1M
dataset_info:
features:
- name: query_de
dtype: string
- name: answer_de
dtype: string
- name: query
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 140561522
num_examples: 100231
download_size: 91774972
dataset_size: 140561522
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Natural Questions (German)
This dataset is a German-translated version of the original [Natural Questions](https://ai.google.com/research/NaturalQuestions) question-answer dataset by Google. It has been translated from English into German and extended with additional columns to include both the original and the translated content.
This dataset can be used directly with Sentence Transformers to train multilingual embedding models or to fine-tune models on German QA tasks.
## Dataset Structure
* Columns:
- `"query"`: Original English question
- `"answer"`: Original English answer passage
- `"question_de"`: Translated German question
- `"answer_de"`: Translated German answer passage
* Column types: all `str`
* Example:
```python
{
'query': 'the si unit of the electric field is',
'answer': 'Electric field An electric field is a field that surrounds electric charges...',
'question_de': 'Die SI-Einheit des elektrischen Feldes ist',
'answer_de': 'Ein elektrisches Feld ist ein Feld, das elektrische Ladungen umgibt...'
}
```
## Collection Strategy
This dataset is based on the `pair` subset from the [embedding-training-data](https://huggingface.co/datasets/sentence-transformers/embedding-training-data) collection. The German translations were generated automatically and have not been manually verified. Use with caution in high-stakes applications.
## Use Cases
The dataset is ideal for:
- Training or evaluating multilingual embedding models
- Cross-lingual retrieval and similarity tasks
- Question answering and sentence similarity in German
## Licensing and Attribution
The dataset is based on content from the Natural Questions dataset by Google, translated under fair use. Please cite the original [Natural Questions dataset](https://ai.google.com/research/NaturalQuestions) in any work using this resource. |