Upload 10 files
Browse files- .gitignore +2 -0
- LICENSE.txt +21 -0
- README.md +4 -0
- explanation.html +49 -0
- install.py +13 -0
- javascript/promptgen.js +22 -0
- requirements.txt +2 -0
- screenshot.png +0 -0
- scripts/promptgen.py +282 -0
- style.css +54 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
/models
|
LICENSE.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2023 AUTOMATIC1111
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
README.md
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Prompt generator
|
| 2 |
+
An extension for [webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) that lets you generate prompts.
|
| 3 |
+
|
| 4 |
+

|
explanation.html
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<div id="promptgen_explanation_show" >
|
| 2 |
+
<a style="font-weight: bold; cursor: pointer" onclick="gradioApp().getElementById('promptgen_explanation').style.display=''; gradioApp().getElementById('promptgen_explanation_show').style.display='none'; return false">
|
| 3 |
+
Information
|
| 4 |
+
</a>
|
| 5 |
+
</div>
|
| 6 |
+
<div style="display:none" id="promptgen_explanation">
|
| 7 |
+
<table>
|
| 8 |
+
<thead>
|
| 9 |
+
<tr>
|
| 10 |
+
<th>Name</th>
|
| 11 |
+
<th>Description</th>
|
| 12 |
+
</tr>
|
| 13 |
+
</thead>
|
| 14 |
+
<tbody>
|
| 15 |
+
<tr>
|
| 16 |
+
<td>Top K</td>
|
| 17 |
+
<td>When appending a word to the prompt, pick out of K most likely candidates.</td>
|
| 18 |
+
</tr>
|
| 19 |
+
<tr>
|
| 20 |
+
<td>Sampling mode</td>
|
| 21 |
+
<td>When appending a word to the prompt, pick out of most likely candidates whose total probability is reater than P.</td>
|
| 22 |
+
</tr>
|
| 23 |
+
<tr>
|
| 24 |
+
<td>Number of beams</td>
|
| 25 |
+
<td>Track multiple copies of each prompt as it's being generated, and when done pick one with most likelihood.</td>
|
| 26 |
+
</tr>
|
| 27 |
+
<tr>
|
| 28 |
+
<td>Temperature</td>
|
| 29 |
+
<td>When appending a word to the prompt, the greater temperature is, the more chance to pick an unlikely candidate. At 0, all generated prompts are the same.</td>
|
| 30 |
+
</tr>
|
| 31 |
+
<tr>
|
| 32 |
+
<td>Repetition penalty</td>
|
| 33 |
+
<td>The greater the value is, the less likely repeated tearms are to appear in prompt.</td>
|
| 34 |
+
</tr>
|
| 35 |
+
<tr>
|
| 36 |
+
<td>Length preference</td>
|
| 37 |
+
<td>Negative values tend to produce shorter prompt, positive - longer. Only works with Number of beams > 0.</td>
|
| 38 |
+
</tr>
|
| 39 |
+
<tr>
|
| 40 |
+
<td>Min length</td>
|
| 41 |
+
<td>Minimum length of generated prompt in tokens.</td>
|
| 42 |
+
</tr>
|
| 43 |
+
<tr>
|
| 44 |
+
<td>Max length</td>
|
| 45 |
+
<td>Maximum length of generated prompt in tokens.</td>
|
| 46 |
+
</tr>
|
| 47 |
+
</tbody>
|
| 48 |
+
</table>
|
| 49 |
+
</div>
|
install.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import launch
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
current_dir = os.path.dirname(os.path.realpath(__file__))
|
| 5 |
+
req_file = os.path.join(current_dir, "requirements.txt")
|
| 6 |
+
|
| 7 |
+
with open(req_file) as file:
|
| 8 |
+
for lib in file:
|
| 9 |
+
lib = lib.strip()
|
| 10 |
+
if not launch.is_installed(lib):
|
| 11 |
+
launch.run_pip(
|
| 12 |
+
f"install {lib}",
|
| 13 |
+
f"danbooru-tag-gen requirement: {lib}")
|
javascript/promptgen.js
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
function promptgen_send_to(where, text){
|
| 3 |
+
textarea = gradioApp().querySelector('#promptgen_selected_text textarea')
|
| 4 |
+
textarea.value = text
|
| 5 |
+
updateInput(textarea)
|
| 6 |
+
|
| 7 |
+
gradioApp().querySelector('#promptgen_send_to_'+where).click()
|
| 8 |
+
|
| 9 |
+
where == 'txt2img' ? switch_to_txt2img() : switch_to_img2img()
|
| 10 |
+
}
|
| 11 |
+
|
| 12 |
+
function promptgen_send_to_txt2img(text){ promptgen_send_to('txt2img', text) }
|
| 13 |
+
function promptgen_send_to_img2img(text){ promptgen_send_to('img2img', text) }
|
| 14 |
+
|
| 15 |
+
function submit_promptgen(){
|
| 16 |
+
var id = randomId()
|
| 17 |
+
requestProgress(id, gradioApp().getElementById('promptgen_results_column'), null, function(){})
|
| 18 |
+
|
| 19 |
+
var res = create_submit_args(arguments)
|
| 20 |
+
res[0] = id
|
| 21 |
+
return res
|
| 22 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.30.1
|
| 2 |
+
auto_gptq==0.2.2
|
screenshot.png
ADDED
|
scripts/promptgen.py
ADDED
|
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import html
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import transformers
|
| 7 |
+
from transformers import AutoTokenizer
|
| 8 |
+
from auto_gptq import AutoGPTQForCausalLM
|
| 9 |
+
|
| 10 |
+
from modules import shared, generation_parameters_copypaste
|
| 11 |
+
|
| 12 |
+
from modules import scripts, script_callbacks, devices, ui
|
| 13 |
+
import gradio as gr
|
| 14 |
+
|
| 15 |
+
from modules.ui_components import FormRow
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class Model:
|
| 19 |
+
name = None
|
| 20 |
+
model = None
|
| 21 |
+
tokenizer = None
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
available_models = []
|
| 25 |
+
current = Model()
|
| 26 |
+
|
| 27 |
+
base_dir = scripts.basedir()
|
| 28 |
+
models_dir = os.path.join(base_dir, "models")
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def device():
|
| 32 |
+
return devices.cpu if shared.opts.promptgen_device == 'cpu' else devices.device
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def list_available_models():
|
| 36 |
+
available_models.clear()
|
| 37 |
+
|
| 38 |
+
os.makedirs(models_dir, exist_ok=True)
|
| 39 |
+
|
| 40 |
+
for dirname in os.listdir(models_dir):
|
| 41 |
+
if os.path.isdir(os.path.join(models_dir, dirname)):
|
| 42 |
+
available_models.append(dirname)
|
| 43 |
+
|
| 44 |
+
for name in [x.strip() for x in shared.opts.promptgen_names.split(",")]:
|
| 45 |
+
if not name:
|
| 46 |
+
continue
|
| 47 |
+
|
| 48 |
+
available_models.append(name)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def get_model_path(name):
|
| 52 |
+
dirname = os.path.join(models_dir, name)
|
| 53 |
+
if not os.path.isdir(dirname):
|
| 54 |
+
return name
|
| 55 |
+
|
| 56 |
+
return dirname
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def generate_batch(input_ids, min_length, max_length, num_beams, temperature, repetition_penalty, length_penalty, sampling_mode, top_k, top_p):
|
| 60 |
+
top_p = float(top_p) if sampling_mode == 'Top P' else None
|
| 61 |
+
top_k = int(top_k) if sampling_mode == 'Top K' else None
|
| 62 |
+
|
| 63 |
+
outputs = current.model.generate(
|
| 64 |
+
input_ids,
|
| 65 |
+
do_sample=True,
|
| 66 |
+
temperature=max(float(temperature), 1e-6),
|
| 67 |
+
repetition_penalty=repetition_penalty,
|
| 68 |
+
length_penalty=length_penalty,
|
| 69 |
+
top_p=top_p,
|
| 70 |
+
top_k=top_k,
|
| 71 |
+
num_beams=int(num_beams),
|
| 72 |
+
min_length=min_length,
|
| 73 |
+
max_length=max_length,
|
| 74 |
+
pad_token_id=current.tokenizer.pad_token_id or current.tokenizer.eos_token_id
|
| 75 |
+
)
|
| 76 |
+
texts = current.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 77 |
+
return texts
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def model_selection_changed(model_name):
|
| 81 |
+
if model_name == "None":
|
| 82 |
+
current.tokenizer = None
|
| 83 |
+
current.model = None
|
| 84 |
+
current.name = None
|
| 85 |
+
|
| 86 |
+
devices.torch_gc()
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def generate(id_task, model_name, batch_count, batch_size, text, *args):
|
| 90 |
+
shared.state.textinfo = "Loading model..."
|
| 91 |
+
shared.state.job_count = batch_count
|
| 92 |
+
model_name = 'qwopqwop/danbooru-llama-gptq'
|
| 93 |
+
|
| 94 |
+
if current.name != model_name:
|
| 95 |
+
current.tokenizer = None
|
| 96 |
+
current.model = None
|
| 97 |
+
current.name = None
|
| 98 |
+
|
| 99 |
+
if model_name != 'None':
|
| 100 |
+
model = AutoGPTQForCausalLM.from_quantized("qwopqwop/danbooru-llama-gptq").model
|
| 101 |
+
current.model = model
|
| 102 |
+
|
| 103 |
+
DEFAULT_PAD_TOKEN = "[PAD]"
|
| 104 |
+
|
| 105 |
+
tokenizer = AutoTokenizer.from_pretrained("pinkmanlove/llama-7b-hf", use_fast=False)
|
| 106 |
+
|
| 107 |
+
def smart_tokenizer_and_embedding_resize(
|
| 108 |
+
special_tokens_dict,
|
| 109 |
+
tokenizer,
|
| 110 |
+
model,
|
| 111 |
+
):
|
| 112 |
+
"""Resize tokenizer and embedding.
|
| 113 |
+
|
| 114 |
+
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
|
| 115 |
+
"""
|
| 116 |
+
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
| 117 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 118 |
+
|
| 119 |
+
if num_new_tokens > 0:
|
| 120 |
+
input_embeddings = model.get_input_embeddings().weight.data
|
| 121 |
+
output_embeddings = model.get_output_embeddings().weight.data
|
| 122 |
+
|
| 123 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
|
| 124 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
|
| 125 |
+
|
| 126 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
| 127 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
| 128 |
+
|
| 129 |
+
if tokenizer._pad_token is None:
|
| 130 |
+
smart_tokenizer_and_embedding_resize(
|
| 131 |
+
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
|
| 132 |
+
tokenizer=tokenizer,
|
| 133 |
+
model=model)
|
| 134 |
+
|
| 135 |
+
tokenizer.add_special_tokens({"eos_token": tokenizer.convert_ids_to_tokens(model.config.eos_token_id),
|
| 136 |
+
"bos_token": tokenizer.convert_ids_to_tokens(model.config.bos_token_id),
|
| 137 |
+
"unk_token": tokenizer.convert_ids_to_tokens(model.config.pad_token_id if model.config.pad_token_id != -1 else tokenizer.pad_token_id),})
|
| 138 |
+
|
| 139 |
+
current.tokenizer = tokenizer
|
| 140 |
+
current.name = model_name
|
| 141 |
+
|
| 142 |
+
assert current.model, 'No model available'
|
| 143 |
+
assert current.tokenizer, 'No tokenizer available'
|
| 144 |
+
|
| 145 |
+
current.model.to(device())
|
| 146 |
+
|
| 147 |
+
shared.state.textinfo = ""
|
| 148 |
+
|
| 149 |
+
input_ids = current.tokenizer(text, return_tensors="pt").input_ids
|
| 150 |
+
if input_ids.shape[1] == 0:
|
| 151 |
+
input_ids = torch.asarray([[current.tokenizer.bos_token_id]], dtype=torch.long)
|
| 152 |
+
input_ids = input_ids.to(device())
|
| 153 |
+
input_ids = input_ids.repeat((batch_size, 1))
|
| 154 |
+
|
| 155 |
+
markup = '<table><tbody>'
|
| 156 |
+
|
| 157 |
+
index = 0
|
| 158 |
+
for i in range(batch_count):
|
| 159 |
+
texts = generate_batch(input_ids, *args)
|
| 160 |
+
shared.state.nextjob()
|
| 161 |
+
for generated_text in texts:
|
| 162 |
+
index += 1
|
| 163 |
+
markup += f"""
|
| 164 |
+
<tr>
|
| 165 |
+
<td>
|
| 166 |
+
<div class="prompt gr-box gr-text-input">
|
| 167 |
+
<p id='promptgen_res_{index}'>{html.escape(generated_text)}</p>
|
| 168 |
+
</div>
|
| 169 |
+
</td>
|
| 170 |
+
<td class="sendto">
|
| 171 |
+
<a class='gr-button gr-button-lg gr-button-secondary' onclick="promptgen_send_to_txt2img(gradioApp().getElementById('promptgen_res_{index}').textContent)">to txt2img</a>
|
| 172 |
+
<a class='gr-button gr-button-lg gr-button-secondary' onclick="promptgen_send_to_img2img(gradioApp().getElementById('promptgen_res_{index}').textContent)">to img2img</a>
|
| 173 |
+
</td>
|
| 174 |
+
</tr>
|
| 175 |
+
"""
|
| 176 |
+
|
| 177 |
+
markup += '</tbody></table>'
|
| 178 |
+
|
| 179 |
+
return markup, ''
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def find_prompts(fields):
|
| 183 |
+
field_prompt = [x for x in fields if x[1] == "Prompt"][0]
|
| 184 |
+
field_negative_prompt = [x for x in fields if x[1] == "Negative prompt"][0]
|
| 185 |
+
return [field_prompt[0], field_negative_prompt[0]]
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def send_prompts(text):
|
| 189 |
+
params = generation_parameters_copypaste.parse_generation_parameters(text)
|
| 190 |
+
negative_prompt = params.get("Negative prompt", "")
|
| 191 |
+
return params.get("Prompt", ""), negative_prompt or gr.update()
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def add_tab():
|
| 195 |
+
list_available_models()
|
| 196 |
+
|
| 197 |
+
with gr.Blocks(analytics_enabled=False) as tab:
|
| 198 |
+
with gr.Row():
|
| 199 |
+
with gr.Column(scale=80):
|
| 200 |
+
prompt = gr.Textbox(label="Prompt", elem_id="promptgen_prompt", show_label=False, lines=2, placeholder="Beginning of the prompt (press Ctrl+Enter or Alt+Enter to generate)").style(container=False)
|
| 201 |
+
with gr.Column(scale=10):
|
| 202 |
+
submit = gr.Button('Generate', elem_id="promptgen_generate", variant='primary')
|
| 203 |
+
|
| 204 |
+
with gr.Row(elem_id="promptgen_main"):
|
| 205 |
+
with gr.Column(variant="compact"):
|
| 206 |
+
selected_text = gr.TextArea(elem_id='promptgen_selected_text', visible=False)
|
| 207 |
+
send_to_txt2img = gr.Button(elem_id='promptgen_send_to_txt2img', visible=False)
|
| 208 |
+
send_to_img2img = gr.Button(elem_id='promptgen_send_to_img2img', visible=False)
|
| 209 |
+
|
| 210 |
+
with FormRow():
|
| 211 |
+
model_selection = gr.Dropdown(label="Model", elem_id="promptgen_model", value=available_models[0], choices=["None"] + available_models)
|
| 212 |
+
|
| 213 |
+
with FormRow():
|
| 214 |
+
sampling_mode = gr.Radio(label="Sampling mode", elem_id="promptgen_sampling_mode", value="Top K", choices=["Top K", "Top P"])
|
| 215 |
+
top_k = gr.Slider(label="Top K", elem_id="promptgen_top_k", value=12, minimum=1, maximum=50, step=1)
|
| 216 |
+
top_p = gr.Slider(label="Top P", elem_id="promptgen_top_p", value=0.15, minimum=0, maximum=1, step=0.001)
|
| 217 |
+
|
| 218 |
+
with gr.Row():
|
| 219 |
+
num_beams = gr.Slider(label="Number of beams", elem_id="promptgen_num_beams", value=1, minimum=1, maximum=8, step=1)
|
| 220 |
+
temperature = gr.Slider(label="Temperature", elem_id="promptgen_temperature", value=1, minimum=0, maximum=4, step=0.01)
|
| 221 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", elem_id="promptgen_repetition_penalty", value=1, minimum=1, maximum=4, step=0.01)
|
| 222 |
+
|
| 223 |
+
with FormRow():
|
| 224 |
+
length_penalty = gr.Slider(label="Length preference", elem_id="promptgen_length_preference", value=1, minimum=-10, maximum=10, step=0.1)
|
| 225 |
+
min_length = gr.Slider(label="Min length", elem_id="promptgen_min_length", value=20, minimum=1, maximum=400, step=1)
|
| 226 |
+
max_length = gr.Slider(label="Max length", elem_id="promptgen_max_length", value=150, minimum=1, maximum=400, step=1)
|
| 227 |
+
|
| 228 |
+
with FormRow():
|
| 229 |
+
batch_count = gr.Slider(label="Batch count", elem_id="promptgen_batch_count", value=1, minimum=1, maximum=100, step=1)
|
| 230 |
+
batch_size = gr.Slider(label="Batch size", elem_id="promptgen_batch_size", value=10, minimum=1, maximum=100, step=1)
|
| 231 |
+
|
| 232 |
+
with open(os.path.join(base_dir, "explanation.html"), encoding="utf8") as file:
|
| 233 |
+
footer = file.read()
|
| 234 |
+
gr.HTML(footer)
|
| 235 |
+
|
| 236 |
+
with gr.Column():
|
| 237 |
+
with gr.Group(elem_id="promptgen_results_column"):
|
| 238 |
+
res = gr.HTML()
|
| 239 |
+
res_info = gr.HTML()
|
| 240 |
+
|
| 241 |
+
submit.click(
|
| 242 |
+
fn=ui.wrap_gradio_gpu_call(generate, extra_outputs=['']),
|
| 243 |
+
_js="submit_promptgen",
|
| 244 |
+
inputs=[model_selection, model_selection, batch_count, batch_size, prompt, min_length, max_length, num_beams, temperature, repetition_penalty, length_penalty, sampling_mode, top_k, top_p, ],
|
| 245 |
+
outputs=[res, res_info]
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
model_selection.change(
|
| 249 |
+
fn=model_selection_changed,
|
| 250 |
+
inputs=[model_selection],
|
| 251 |
+
outputs=[],
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
send_to_txt2img.click(
|
| 255 |
+
fn=send_prompts,
|
| 256 |
+
inputs=[selected_text],
|
| 257 |
+
outputs=find_prompts(ui.txt2img_paste_fields)
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
send_to_img2img.click(
|
| 261 |
+
fn=send_prompts,
|
| 262 |
+
inputs=[selected_text],
|
| 263 |
+
outputs=find_prompts(ui.img2img_paste_fields)
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
return [(tab, "Promptgen", "promptgen")]
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def on_ui_settings():
|
| 270 |
+
section = ("promptgen", "Promptgen")
|
| 271 |
+
|
| 272 |
+
shared.opts.add_option("promptgen_names", shared.OptionInfo("qwopqwop/danbooru-llama-gptq", section=section))
|
| 273 |
+
shared.opts.add_option("promptgen_device", shared.OptionInfo("gpu", "Device to use for text generation", gr.Radio, {"choices": ["gpu"]}, section=section))
|
| 274 |
+
|
| 275 |
+
def on_unload():
|
| 276 |
+
current.model = None
|
| 277 |
+
current.tokenizer = None
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
script_callbacks.on_ui_tabs(add_tab)
|
| 281 |
+
script_callbacks.on_ui_settings(on_ui_settings)
|
| 282 |
+
script_callbacks.on_script_unloaded(on_unload)
|
style.css
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
#promptgen_generate{
|
| 3 |
+
height: 100%
|
| 4 |
+
}
|
| 5 |
+
|
| 6 |
+
#promptgen_main{
|
| 7 |
+
margin-top: 1em;
|
| 8 |
+
}
|
| 9 |
+
|
| 10 |
+
#tab_promptgen table tr{
|
| 11 |
+
height: 1px;
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
#tab_promptgen table tr td{
|
| 15 |
+
height: 100%;
|
| 16 |
+
padding: 0.3em;
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
#tab_promptgen .prompt{
|
| 20 |
+
border: 1px solid rgba(128, 128, 128, 0.2);
|
| 21 |
+
height: 100%;
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
#tab_promptgen .prompt p{
|
| 25 |
+
white-space: pre-line;
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
#tab_promptgen .sendto{
|
| 29 |
+
width: 8em;
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
#tab_promptgen .sendto a{
|
| 33 |
+
cursor: pointer;
|
| 34 |
+
display: block;
|
| 35 |
+
margin: 0.2em;
|
| 36 |
+
padding: 0.4em;
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
#tab_promptgen .gr-form{
|
| 40 |
+
border: none;
|
| 41 |
+
padding-bottom: 0.5em;
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
#promptgen_explanation table{
|
| 45 |
+
border-collapse: collapse;
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
#promptgen_explanation table td, #promptgen_explanation table th{
|
| 49 |
+
border: 1px solid rgba(128,128,128,0.1);
|
| 50 |
+
vertical-align: top;
|
| 51 |
+
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
|