Fine-tuned with QuicKB
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("densonsmith/modernbert-embed-quickb")
# Run inference
sentences = [
'Who are the hosts of The Conan & Jordan Show?',
"Graph: Team Coco Knowledge Graph\nNode ID: the_conan_and_jordan_show\nCategory: shows\nName: The Conan & Jordan Show (radio program)\nType: Show\n\nDescription: A spin-off audio series on SiriusXM's Team Coco Radio, launched in 2023, featuring Conan O'Brien and Jordan Schlansky continuing their comedic odd-couple dynamic.",
"Awards and Recognitions:\n- 7 Primetime Emmy nominations for writing on Conan's shows\n- 10 WGA Award nominations (with 2 wins)\n- 2 Daytime Emmy nominations for Animated Program performance\n\nMajor Events:\n- 1993 Late Night Debut – Joined Conan's first show as sidekick.\n- 2000 Departure – Left 'Late Night' to pursue acting.\n- 2010 Tour & TBS Move – Reunited with Conan on the live tour and TBS.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768,dim_512,dim_256,dim_128anddim_64 - Evaluated with
InformationRetrievalEvaluator
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|---|---|---|---|---|---|
| cosine_accuracy@1 | 0.7222 | 0.6944 | 0.6667 | 0.6389 | 0.6111 |
| cosine_accuracy@3 | 0.8611 | 0.8889 | 0.8611 | 0.8611 | 0.7778 |
| cosine_accuracy@5 | 0.9167 | 0.9167 | 0.9167 | 0.9167 | 0.8333 |
| cosine_accuracy@10 | 0.9444 | 0.9722 | 0.9444 | 0.9444 | 0.9167 |
| cosine_precision@1 | 0.7222 | 0.6944 | 0.6667 | 0.6389 | 0.6111 |
| cosine_precision@3 | 0.287 | 0.2963 | 0.287 | 0.287 | 0.2593 |
| cosine_precision@5 | 0.1833 | 0.1833 | 0.1833 | 0.1833 | 0.1667 |
| cosine_precision@10 | 0.0944 | 0.0972 | 0.0944 | 0.0944 | 0.0917 |
| cosine_recall@1 | 0.7222 | 0.6944 | 0.6667 | 0.6389 | 0.6111 |
| cosine_recall@3 | 0.8611 | 0.8889 | 0.8611 | 0.8611 | 0.7778 |
| cosine_recall@5 | 0.9167 | 0.9167 | 0.9167 | 0.9167 | 0.8333 |
| cosine_recall@10 | 0.9444 | 0.9722 | 0.9444 | 0.9444 | 0.9167 |
| cosine_ndcg@10 | 0.8364 | 0.835 | 0.8075 | 0.8038 | 0.7608 |
| cosine_mrr@10 | 0.8009 | 0.791 | 0.7627 | 0.7574 | 0.7111 |
| cosine_map@100 | 0.8042 | 0.7917 | 0.7662 | 0.7598 | 0.714 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 321 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 321 samples:
anchor positive type string string details - min: 7 tokens
- mean: 14.03 tokens
- max: 24 tokens
- min: 15 tokens
- mean: 74.79 tokens
- max: 117 tokens
- Samples:
anchor positive What brand did Jeff Ross help establish?Graph: Team Coco Knowledge Graph
Node ID: jeff_ross_producer
Category: people
Name: Jeff Ross (Producer)
Type: Person
Description: Jeff Ross is a television producer who has served as Conan O'Brien's executive producer since 1993. He is a key business partner in Conan's media ventures and helped establish the Team Coco brand.In what year did Conan O'Brien launch the travel show 'Conan O'Brien Must Go'?Description: Conan O'Brien is an American television host, comedian, writer, actor, and producer, best known for hosting late-night shows including "Late Night with Conan O'Brien", "The Tonight Show with Conan O'Brien", and "Conan". He also hosts the podcast "Conan O'Brien Needs a Friend" and, in 2024, launched the travel show "Conan O'Brien Must Go" on Max.What is the strength of the network TBS?- Network tbs (Strength: parent)
Description: TBS provided the platform for the show. - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 4gradient_accumulation_steps: 16learning_rate: 2e-05num_train_epochs: 4lr_scheduler_type: cosinewarmup_ratio: 0.1bf16: Truetf32: Trueload_best_model_at_end: Trueoptim: adamw_torch_fusedbatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 16eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Truelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|---|---|---|---|---|---|---|---|
| 1.0 | 6 | - | 0.7909 | 0.8034 | 0.7711 | 0.7992 | 0.6908 |
| 1.7901 | 10 | 16.3044 | - | - | - | - | - |
| 2.0 | 12 | - | 0.8364 | 0.8294 | 0.8022 | 0.8038 | 0.7691 |
| 3.0 | 18 | - | 0.8364 | 0.8313 | 0.8059 | 0.7938 | 0.7599 |
| 3.3951 | 20 | 5.6348 | 0.8364 | 0.8350 | 0.8075 | 0.8038 | 0.7608 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.4
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Model tree for densonsmith/modernbert-embed-quickb
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.722
- Cosine Accuracy@3 on dim 768self-reported0.861
- Cosine Accuracy@5 on dim 768self-reported0.917
- Cosine Accuracy@10 on dim 768self-reported0.944
- Cosine Precision@1 on dim 768self-reported0.722
- Cosine Precision@3 on dim 768self-reported0.287
- Cosine Precision@5 on dim 768self-reported0.183
- Cosine Precision@10 on dim 768self-reported0.094
- Cosine Recall@1 on dim 768self-reported0.722
- Cosine Recall@3 on dim 768self-reported0.861