Create ultravox_processing.py
Browse files- ultravox_processing.py +172 -0
ultravox_processing.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Optional, Union
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import transformers
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class UltravoxProcessor(transformers.ProcessorMixin):
|
| 9 |
+
"""
|
| 10 |
+
Constructs an Ultravox processor which wraps an audio processor and a tokenizer into a single processor.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
audio_processor: The audio processor for the audio encoder.
|
| 14 |
+
tokenizer: The tokenizer for the language model.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
attributes = ["audio_processor", "tokenizer"]
|
| 18 |
+
audio_processor_class = (
|
| 19 |
+
"Wav2Vec2Processor",
|
| 20 |
+
"SeamlessM4TFeatureExtractor",
|
| 21 |
+
"WhisperProcessor",
|
| 22 |
+
)
|
| 23 |
+
tokenizer_class = (
|
| 24 |
+
"PreTrainedTokenizer",
|
| 25 |
+
"PreTrainedTokenizerFast",
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
tokenizer: transformers.PreTrainedTokenizerBase
|
| 29 |
+
audio_processor: transformers.ProcessorMixin
|
| 30 |
+
|
| 31 |
+
def __init__(
|
| 32 |
+
self,
|
| 33 |
+
audio_processor=None,
|
| 34 |
+
tokenizer=None,
|
| 35 |
+
audio_padding: str = "longest",
|
| 36 |
+
encoder_ds_factor: int = 320,
|
| 37 |
+
stack_factor: int = 8,
|
| 38 |
+
audio_placeholder: str = "<|audio|>",
|
| 39 |
+
):
|
| 40 |
+
"""
|
| 41 |
+
Args:
|
| 42 |
+
audio_processor: The audio processor for the audio encoder.
|
| 43 |
+
tokenizer: The tokenizer for the language model.
|
| 44 |
+
audio_padding: The padding strategy for the audio encoder.
|
| 45 |
+
encoder_ds_factor: The downsample factor of the audio encoder.
|
| 46 |
+
stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector.
|
| 47 |
+
audio_placeholder: The placeholder for the audio in the text.
|
| 48 |
+
"""
|
| 49 |
+
self.audio_padding = audio_padding
|
| 50 |
+
self.encoder_ds_factor = encoder_ds_factor
|
| 51 |
+
self.stack_factor = stack_factor
|
| 52 |
+
self.audio_placeholder = audio_placeholder
|
| 53 |
+
self.audio_token_replacement = tokenizer.eos_token
|
| 54 |
+
assert (
|
| 55 |
+
self.audio_token_replacement is not None
|
| 56 |
+
), "The tokenizer has no EOS token. Cannot recover."
|
| 57 |
+
super().__init__(audio_processor=audio_processor, tokenizer=tokenizer)
|
| 58 |
+
|
| 59 |
+
def __call__(
|
| 60 |
+
self,
|
| 61 |
+
text: Optional[str] = None,
|
| 62 |
+
audio: Optional[Union[np.ndarray, torch.Tensor]] = None,
|
| 63 |
+
sampling_rate: Optional[int] = None,
|
| 64 |
+
return_tensors: Optional[
|
| 65 |
+
Union[str, transformers.TensorType]
|
| 66 |
+
] = transformers.TensorType.PYTORCH,
|
| 67 |
+
**kwargs,
|
| 68 |
+
) -> transformers.BatchFeature:
|
| 69 |
+
"""
|
| 70 |
+
Main method to prepare for the model one text sequence and audio. This method forwards the `text`
|
| 71 |
+
and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
|
| 72 |
+
the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to
|
| 73 |
+
audio processor's [`~Wav2Vec2Processor.__call__`] if `audio` is not `None`. Please refer to the docstring
|
| 74 |
+
of the above two methods for more information.
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
text (`str`, `List[str]`):
|
| 78 |
+
The sequence to be encoded. Sequence can be a string or (pretokenized string).
|
| 79 |
+
audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 80 |
+
The audio to be prepared. Audio can be NumPy array or PyTorch tensor. In case of a
|
| 81 |
+
NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the
|
| 82 |
+
sample length of the audio.
|
| 83 |
+
sampling_rate (`int`, *optional*, defaults to 16000):
|
| 84 |
+
Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what
|
| 85 |
+
you are doing.
|
| 86 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 87 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 88 |
+
|
| 89 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 90 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 91 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 92 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 93 |
+
|
| 94 |
+
Returns:
|
| 95 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
| 96 |
+
|
| 97 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 98 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 99 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 100 |
+
`None`).
|
| 101 |
+
- **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`.
|
| 102 |
+
- **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound.
|
| 103 |
+
Returned when `audio` is not `None`.
|
| 104 |
+
- **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`.
|
| 105 |
+
"""
|
| 106 |
+
# TODO: Add support for multiple audio and text inputs.
|
| 107 |
+
data = {}
|
| 108 |
+
audio_embed_frames = 0
|
| 109 |
+
if audio is not None and len(audio) > 0:
|
| 110 |
+
if self.audio_padding == "max_length":
|
| 111 |
+
# 30 seconds is the expected length for Whisper
|
| 112 |
+
assert sampling_rate is not None, "Sampling rate must be provided."
|
| 113 |
+
audio_len = 30 * sampling_rate
|
| 114 |
+
else:
|
| 115 |
+
audio_len = audio.shape[-1]
|
| 116 |
+
# It's guaranteed that the number of frames is less than or equal to this amount.
|
| 117 |
+
# For Whisper this is exact AFAICT, but for Wav2Vec2 it's an upper bound.
|
| 118 |
+
# Currently, StackAudioFrames makes sure an over-estimation won't cause issues by padding the audio embeddings.
|
| 119 |
+
nb_encoder_frames = int(round(audio_len / self.encoder_ds_factor + 1e-4))
|
| 120 |
+
audio_embed_frames = int(np.ceil(nb_encoder_frames / self.stack_factor))
|
| 121 |
+
data["audio_token_len"] = [audio_embed_frames]
|
| 122 |
+
|
| 123 |
+
x = self.audio_processor(
|
| 124 |
+
audio,
|
| 125 |
+
sampling_rate=sampling_rate,
|
| 126 |
+
padding="longest",
|
| 127 |
+
max_length=audio_len,
|
| 128 |
+
**kwargs,
|
| 129 |
+
)
|
| 130 |
+
if "input_features" in x:
|
| 131 |
+
data["audio_values"] = x.input_features
|
| 132 |
+
else:
|
| 133 |
+
data["audio_values"] = x.input_values
|
| 134 |
+
|
| 135 |
+
if text is not None:
|
| 136 |
+
assert isinstance(
|
| 137 |
+
text, str
|
| 138 |
+
), "Text must be a string. Batch mode not supported yet."
|
| 139 |
+
if self.audio_placeholder in text:
|
| 140 |
+
if "audio_token_len" not in data:
|
| 141 |
+
raise ValueError(
|
| 142 |
+
f"audio must be provided when using audio placeholder ({self.audio_placeholder}) in text."
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
start_idx = len(
|
| 146 |
+
self.tokenizer.encode(
|
| 147 |
+
text[: text.index(self.audio_placeholder)],
|
| 148 |
+
add_special_tokens=False,
|
| 149 |
+
)
|
| 150 |
+
)
|
| 151 |
+
data["audio_token_start_idx"] = [start_idx]
|
| 152 |
+
text = text.replace(
|
| 153 |
+
self.audio_placeholder,
|
| 154 |
+
self.audio_token_replacement * audio_embed_frames,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# Special tokens like BOS should already have been added by the caller.
|
| 158 |
+
data.update(self.tokenizer([text], add_special_tokens=False, **kwargs))
|
| 159 |
+
|
| 160 |
+
return transformers.BatchFeature(data=data, tensor_type=return_tensors)
|
| 161 |
+
|
| 162 |
+
def batch_decode(self, *args, **kwargs):
|
| 163 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 164 |
+
|
| 165 |
+
def decode(self, *args, **kwargs):
|
| 166 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 167 |
+
|
| 168 |
+
@property
|
| 169 |
+
def model_input_names(self):
|
| 170 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 171 |
+
audio_processor_input_names = self.audio_processor.model_input_names
|
| 172 |
+
return list(set(tokenizer_input_names + audio_processor_input_names))
|