File size: 9,093 Bytes
4bbace8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
#!/usr/bin/env python3
import numpy as np
import subprocess
import tempfile
import os
from typing import Optional, List, Dict
from safetensors import safe_open
import json
class MLPProjector:
"""MLP projector to project hidden states to embedding space."""
def __init__(self, linear1_weight, linear2_weight):
self.linear1_weight = linear1_weight
self.linear2_weight = linear2_weight
def __call__(self, x):
# Linear 1
x = x @ self.linear1_weight.T
# ReLU
x = np.maximum(0, x)
# Linear 2
x = x @ self.linear2_weight.T
return x
def load_projector(projector_path: str) -> MLPProjector:
"""Load projector weights from safetensors file."""
with safe_open(projector_path, framework="numpy") as f:
w0 = f.get_tensor("projector.0.weight")
w2 = f.get_tensor("projector.2.weight")
return MLPProjector(w0, w2)
def sanitize_input(text: str, special_tokens: Dict[str, str]) -> str:
"""Remove special tokens from input text."""
for token in special_tokens.values():
text = text.replace(token, "")
return text
def format_docs_prompts_func(
query: str,
docs: list[str],
instruction: Optional[str] = None,
special_tokens: Dict[str, str] = {},
) -> str:
"""Format query and documents into a prompt for the model."""
query = sanitize_input(query, special_tokens)
docs = [sanitize_input(doc, special_tokens) for doc in docs]
prefix = (
"<|im_start|>system\n"
"You are a search relevance expert who can determine a ranking of the passages based on how relevant they are to the query. "
"If the query is a question, how relevant a passage is depends on how well it answers the question. "
"If not, try to analyze the intent of the query and assess how well each passage satisfies the intent. "
"If an instruction is provided, you should follow the instruction when determining the ranking."
"<|im_end|>\n<|im_start|>user\n"
)
suffix = "<|im_end|>\n<|im_start|>assistant\n"
doc_emb_token = special_tokens["doc_embed_token"]
query_emb_token = special_tokens["query_embed_token"]
prompt = (
f"I will provide you with {len(docs)} passages, each indicated by a numerical identifier. "
f"Rank the passages based on their relevance to query: {query}\n"
)
if instruction:
prompt += f'<instruct>\n{instruction}\n</instruct>\n'
doc_prompts = [f'<passage id="{i}">\n{doc}{doc_emb_token}\n</passage>' for i, doc in enumerate(docs)]
prompt += "\n".join(doc_prompts) + "\n"
prompt += f"<query>\n{query}{query_emb_token}\n</query>"
return prefix + prompt + suffix
class GGUFReranker:
"""GGUF-based implementation of jina-reranker-v3."""
def __init__(self, model_path: str = "jina-reranker-v3-BF16.gguf", projector_path: str = "projector.safetensors",
llama_embedding_path: str = "/tmp/hanxiao-llama.cpp/build/bin/llama-embedding"):
"""Initialize GGUF-based reranker."""
self.model_path = model_path
self.llama_embedding_path = llama_embedding_path
self.projector = load_projector(projector_path)
# Special tokens
self.special_tokens = {
"query_embed_token": "<|rerank_token|>",
"doc_embed_token": "<|embed_token|>"
}
self.doc_embed_token_id = 151670
self.query_embed_token_id = 151671
def _get_hidden_states(self, prompt: str) -> np.ndarray:
"""Get per-token hidden states using llama-embedding CLI."""
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as f:
f.write(prompt)
prompt_file = f.name
try:
result = subprocess.run(
[
self.llama_embedding_path,
'-m', self.model_path,
'-f', prompt_file,
'--pooling', 'none',
'--embd-separator', '<#JINA_SEP#>', # Preserve internal newlines
'--embd-normalize', '-1',
'--embd-output-format', 'json',
'--ubatch-size', '512',
'--ctx-size', '8192',
'--flash-attn',
'-ngl', '99'
],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
check=True
)
output = json.loads(result.stdout)
embeddings = [item['embedding'] for item in output['data']]
return np.array(embeddings)
finally:
os.unlink(prompt_file)
def _tokenize(self, prompt: str) -> List[int]:
"""Tokenize prompt to find special token positions."""
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as f:
f.write(prompt)
prompt_file = f.name
try:
result = subprocess.run(
['llama-tokenize', '-m', self.model_path, '-f', prompt_file],
stdout=subprocess.PIPE,
stderr=subprocess.DEVNULL,
text=True,
check=True
)
tokens = []
for line in result.stdout.strip().split('\n'):
if '->' in line:
token_id = int(line.split('->')[0].strip())
tokens.append(token_id)
return tokens
finally:
os.unlink(prompt_file)
def rerank(
self,
query: str,
documents: List[str],
top_n: Optional[int] = None,
return_embeddings: bool = False,
instruction: Optional[str] = None
) -> List[Dict]:
"""Rerank documents based on relevance to query."""
# Format prompt
prompt = format_docs_prompts_func(
query,
documents,
instruction=instruction,
special_tokens=self.special_tokens
)
# Get per-token hidden states using llama-embedding CLI
embeddings = self._get_hidden_states(prompt)
# Tokenize to find special token positions
tokens = self._tokenize(prompt)
tokens_array = np.array(tokens)
query_embed_positions_in_tokens = np.where(tokens_array == self.query_embed_token_id)[0]
doc_embed_positions_in_tokens = np.where(tokens_array == self.doc_embed_token_id)[0]
if len(query_embed_positions_in_tokens) == 0:
raise ValueError(f"Query embed token (ID {self.query_embed_token_id}) not found in input")
if len(doc_embed_positions_in_tokens) == 0:
raise ValueError(f"Document embed tokens (ID {self.doc_embed_token_id}) not found in input")
# llama-embedding strips trailing newlines but preserves internal newlines (via --embd-separator)
# Token positions map directly to embedding indices
query_pos = query_embed_positions_in_tokens[0]
doc_positions = doc_embed_positions_in_tokens
# Extract embeddings at special token positions
query_hidden = embeddings[query_pos:query_pos+1] # [1, hidden_size]
doc_hidden = embeddings[doc_positions] # [num_docs, hidden_size]
# Project embeddings
query_embeds = self.projector(query_hidden) # [1, 512]
doc_embeds = self.projector(doc_hidden) # [num_docs, 512]
# Compute cosine similarity scores
# Broadcast query to match doc shape
query_expanded = np.tile(query_embeds, (len(doc_embeds), 1)) # [num_docs, 512]
# Cosine similarity
dot_product = np.sum(doc_embeds * query_expanded, axis=-1) # [num_docs]
doc_norm = np.sqrt(np.sum(doc_embeds * doc_embeds, axis=-1)) # [num_docs]
query_norm = np.sqrt(np.sum(query_expanded * query_expanded, axis=-1)) # [num_docs]
scores = dot_product / (doc_norm * query_norm) # [num_docs]
# Create results
results = []
for idx, (doc, score, embed) in enumerate(zip(documents, scores, doc_embeds)):
result = {
"index": idx,
"relevance_score": float(score),
"document": doc
}
if return_embeddings:
result["embedding"] = embed.tolist()
results.append(result)
# Sort by score descending
results.sort(key=lambda x: x["relevance_score"], reverse=True)
# Return top_n if specified
if top_n is not None:
results = results[:top_n]
return results
if __name__ == "__main__":
# Test the reranker
reranker = GGUFReranker()
query = "What is the capital of France?"
documents = [
"Paris is the capital and largest city of France.",
"Berlin is the capital of Germany.",
"The Eiffel Tower is located in Paris."
]
results = reranker.rerank(query, documents)
for result in results:
print(f"Doc {result['index']}: {result['relevance_score']:.4f} - {result['document'][:50]}...")
|