test / convert_dl3dv_train.py
lhmd's picture
Update convert_dl3dv_train.py
ab80b45 verified
import subprocess
import sys
from pathlib import Path
from typing import Literal, TypedDict
from PIL import Image
import numpy as np
import torch
from jaxtyping import Float, Int, UInt8
from torch import Tensor
from tqdm import tqdm
import argparse
import json
import os
from glob import glob
parser = argparse.ArgumentParser()
parser.add_argument("--input_base_dir", type=str, help="base directory containing 1K, 2K, ..., 11K subdirectories")
parser.add_argument("--output_base_dir", type=str, help="base output directory for processed datasets")
parser.add_argument(
"--img_subdir",
type=str,
default="images_4",
help="image directory name",
choices=[
"images_4",
"images_8",
],
)
parser.add_argument("--n_test", type=int, default=10, help="test skip")
parser.add_argument("--which_stage", type=str, default=None, help="dataset directory")
parser.add_argument("--detect_overlap", action="store_true")
parser.add_argument("--start_k", type=int, default=1, help="starting K value (default: 1)")
parser.add_argument("--end_k", type=int, default=11, help="ending K value (default: 11)")
args = parser.parse_args()
# Target 200 MB per chunk.
TARGET_BYTES_PER_CHUNK = int(2e8)
def get_size(path: Path) -> int:
"""Get file or folder size in bytes."""
return int(subprocess.check_output(["du", "-b", path]).split()[0].decode("utf-8"))
def load_raw(path: Path) -> UInt8[Tensor, " length"]:
return torch.tensor(np.memmap(path, dtype="uint8", mode="r"))
def load_images(example_path: Path) -> dict[int, UInt8[Tensor, "..."]]:
"""Load JPG images as raw bytes (do not decode)."""
return {
int(path.stem.split("_")[-1]): load_raw(path)
for path in example_path.iterdir()
if path.suffix.lower() not in [".npz"]
}
class Metadata(TypedDict):
url: str
timestamps: Int[Tensor, " camera"]
cameras: Float[Tensor, "camera entry"]
class Example(Metadata):
key: str
images: list[UInt8[Tensor, "..."]]
def load_metadata(example_path: Path) -> Metadata:
blender2opencv = np.array(
[[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
)
url = str(example_path).split("/")[-3]
with open(example_path, "r") as f:
meta_data = json.load(f)
store_h, store_w = meta_data["h"], meta_data["w"]
fx, fy, cx, cy = (
meta_data["fl_x"],
meta_data["fl_y"],
meta_data["cx"],
meta_data["cy"],
)
saved_fx = float(fx) / float(store_w)
saved_fy = float(fy) / float(store_h)
saved_cx = float(cx) / float(store_w)
saved_cy = float(cy) / float(store_h)
timestamps = []
cameras = []
opencv_c2ws = [] # will be used to calculate camera distance
for frame in meta_data["frames"]:
timestamps.append(
int(os.path.basename(frame["file_path"]).split(".")[0].split("_")[-1])
)
camera = [saved_fx, saved_fy, saved_cx, saved_cy, 0.0, 0.0]
# transform_matrix is in blender c2w, while we need to store opencv w2c matrix here
opencv_c2w = np.array(frame["transform_matrix"]) @ blender2opencv
opencv_c2ws.append(opencv_c2w)
camera.extend(np.linalg.inv(opencv_c2w)[:3].flatten().tolist())
cameras.append(np.array(camera))
# timestamp should be the one that match the above images keys, use for indexing
timestamps = torch.tensor(timestamps, dtype=torch.int64)
cameras = torch.tensor(np.stack(cameras), dtype=torch.float32)
return {"url": url, "timestamps": timestamps, "cameras": cameras}
def partition_train_test_splits(root_dir, n_test=10):
sub_folders = sorted(glob(os.path.join(root_dir, "*/")))
test_list = sub_folders[::n_test]
train_list = [x for x in sub_folders if x not in test_list]
out_dict = {"train": train_list, "test": test_list}
return out_dict
def is_image_shape_matched(image_dir, target_shape):
image_path = sorted(glob(str(image_dir / "*")))
if len(image_path) == 0:
return False
image_path = image_path[0]
try:
im = Image.open(image_path)
except:
return False
w, h = im.size
if (h, w) == target_shape:
return True
else:
print("image shape: ", h, " ", w)
return False
def legal_check_for_all_scenes(root_dir, target_shape):
valid_folders = []
sub_folders = sorted(glob(os.path.join(root_dir, "*")))
for sub_folder in tqdm(sub_folders, desc="checking scenes..."):
# img_dir = os.path.join(sub_folder, 'images_8')
img_dir = os.path.join(sub_folder, "images_4")
if not is_image_shape_matched(Path(img_dir), target_shape):
print(f"image shape does not match for {sub_folder}")
continue
pose_file = os.path.join(sub_folder, "transforms.json")
if not os.path.isfile(pose_file):
print(f"cannot find pose file for {sub_folder}")
continue
valid_folders.append(sub_folder)
return valid_folders
def process_single_directory(input_dir: Path, output_dir: Path):
"""Process a single K directory"""
print(f"\n=== Processing {input_dir.name} ===")
INPUT_DIR = input_dir
OUTPUT_DIR = output_dir
if "images_8" in args.img_subdir:
target_shape = (270, 480) # (h, w)
elif "images_4" in args.img_subdir:
target_shape = (540, 960)
else:
raise ValueError
print("checking all scenes...")
valid_scenes = legal_check_for_all_scenes(INPUT_DIR, target_shape)
print("valid scenes:", len(valid_scenes))
# test scenes
test_scenes = "/scratch/azureml/cr/j/e8e7ca980a5641daa86426c3fa644c10/exe/wd/dl3dv_benchmark/index.json"
with open(test_scenes, "r") as f:
overlap_scenes = json.load(f)
assert len(overlap_scenes) == 140, "test scenes should contain 140 scenes"
for stage in ["train"]:
error_logs = []
image_dirs = valid_scenes
chunk_size = 0
chunk_index = 0
chunk: list[Example] = []
def save_chunk():
nonlocal chunk_size, chunk_index, chunk
chunk_key = f"{chunk_index:0>6}"
dir = OUTPUT_DIR / stage
dir.mkdir(exist_ok=True, parents=True)
torch.save(chunk, dir / f"{chunk_key}.torch")
# Reset the chunk.
chunk_size = 0
chunk_index += 1
chunk = []
for image_dir in tqdm(image_dirs, desc=f"Processing {stage}"):
key = os.path.basename(image_dir.strip("/"))
# skip test scenes
if key in overlap_scenes:
print(f"scene {key} in benchmark, skip.")
continue
image_dir = Path(image_dir) / 'images_4' # 540x960
# Check if image directory exists
if not image_dir.exists():
print(f"Image directory does not exist for {key}, skipping...")
continue
num_bytes = get_size(image_dir)
# Read images and metadata.
try:
images = load_images(image_dir)
except:
print("image loading error")
continue
meta_path = image_dir.parent / "transforms.json"
if not meta_path.is_file():
error_msg = f"---------> [ERROR] no meta file in {key}, skip."
print(error_msg)
error_logs.append(error_msg)
continue
example = load_metadata(meta_path)
# Merge the images into the example.
try:
example["images"] = [
images[timestamp.item()] for timestamp in example["timestamps"]
]
except:
error_msg = f"---------> [ERROR] Some images missing in {key}, skip."
print(error_msg)
error_logs.append(error_msg)
continue
# Add the key to the example.
example["key"] = "dl3dv_" + key
chunk.append(example)
chunk_size += num_bytes
if chunk_size >= TARGET_BYTES_PER_CHUNK:
save_chunk()
if chunk_size > 0:
save_chunk()
if __name__ == "__main__":
base_input_dir = Path(args.input_base_dir)
base_output_dir = Path(args.output_base_dir)
# Process all directories from start_k to end_k
total_dirs = args.end_k - args.start_k + 1
processed_dirs = 0
for k in range(args.start_k, args.end_k + 1):
k_dir = f"{k}K"
input_dir = base_input_dir / k_dir
output_dir = base_output_dir / k_dir
if not input_dir.exists():
print(f"Warning: Input directory {input_dir} does not exist, skipping...")
continue
print(f"\n{'='*50}")
print(f"Processing directory {k_dir} ({processed_dirs + 1}/{total_dirs})")
print(f"Input: {input_dir}")
print(f"Output: {output_dir}")
print(f"{'='*50}")
# Process this directory
process_single_directory(input_dir, output_dir)
processed_dirs += 1
print(f"\nCompleted {k_dir} ({processed_dirs}/{total_dirs})")
print(f"\n{'='*50}")
print(f"All processing complete! Processed {processed_dirs}/{total_dirs} directories.")
print(f"{'='*50}")