File size: 1,905 Bytes
ffb99ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
## MLX deployment guide

Run, serve, and fine-tune [**MiniMax-M2**](https://huggingface.co/MiniMaxAI/MiniMax-M2) locally on your Mac using the **MLX** framework. This guide gets you up and running quickly.

> **Requirements**  
> - Apple Silicon Mac (M3 Ultra or later)  
> - **At least 256GB of unified memory (RAM)**  


**Installation**

Install the `mlx-lm` package via pip:

```bash

pip install -U mlx-lm

```

**CLI**

Generate text directly from the terminal:

```bash

mlx_lm.generate \

  --model mlx-community/MiniMax-M2-4bit \

  --prompt "How tall is Mount Everest?"

```

> Add `--max-tokens 256` to control response length, or `--temp 0.7` for creativity.

**Python Script Example**

Use `mlx-lm` in your own Python scripts:

```python

from mlx_lm import load, generate



# Load the quantized model

model, tokenizer = load("mlx-community/MiniMax-M2-4bit")



prompt = "Hello, how are you?"



# Apply chat template if available (recommended for chat models)

if tokenizer.chat_template is not None:

    messages = [{"role": "user", "content": prompt}]

    prompt = tokenizer.apply_chat_template(

        messages,

        tokenize=False,

        add_generation_prompt=True

    )



# Generate response

response = generate(

    model,

    tokenizer,

    prompt=prompt,

    max_tokens=256,

    temp=0.7,

    verbose=True

)



print(response)

```

**Tips**
- **Model variants**: Check this [MLX community collection on Hugging Face](https://huggingface.co/collections/mlx-community/minimax-m2) for `MiniMax-M2-4bit`, `6bit`, `8bit`, or `bfloat16` versions.
- **Fine-tuning**: Use `mlx-lm.lora` for efficient parameter-efficient fine-tuning (PEFT).

**Resources**  
- GitHub: [https://github.com/ml-explore/mlx-lm](https://github.com/ml-explore/mlx-lm)  
- Models: [https://huggingface.co/mlx-community](https://huggingface.co/mlx-community)