--- language: en license: mit tags: - precipitation - convlstm - multitask-learning - climate - vegetation - amazon model-index: - name: MultiTask ConvLSTM w/veg inputs results: - task: type: time-series-forecasting name: Precipitation Prediction dataset: name: ERA5-Land Amazon Basin (2021–2023) type: reanalysis metrics: - type: mean_squared_error value: 0.28 - type: spearman_correlation value: 0.87 - type: pearson_correlation value: 0.79 - type: kendall_tau value: 0.70 - type: nash_sutcliffe_efficiency value: 0.62 - type: f1 value: 0.82 - type: accuracy value: 0.90 - type: precision value: 0.90 - type: ROC-AUC value: 0.97 - type: recall value: 0.75 --- # MultiTask ConvLSTM for Precipitation Prediction This repository contains two MultiTask ConvLSTM models: - **veg/**: Model trained with vegetation input variables - **noveg/**: Model trained without vegetation input variables Both directories include: - `convlstm.py`: base ConvLSTM layers - `model.py`: MultiTask ConvLSTM model definition - `example_inference.py`: inference script - `data/`: example `.pth` files (test) These scripts are provided for reproducibility of the model architecture and workflow. Exact runtime and performance may vary depending on hardware. ## Example Data We provide a large test `.pth` files so you can immediately run the inference script without preprocessing. These files are already preprocessed and normalized from the ECWMF REA5 reanalysis data. Each `.pth` file loads as a list of batches: - `X_batch`: shape `(B, T_in, C_in, H*W)` - `y_batch`: shape `(B, T_out, C_out, H*W)` - `y_zero_batch`: shape `(B, T_out, C_out, H*W)` with `H=81`, `W=97`. Inside `evaluate(...)`, these are reshaped to `(B, T, C, H, W)`. --- ## How to Use Ensure all files are in the correct directory then run the example_inference.py file. # 1 Get the repo git clone https://huggingface.co//MultiTaskConvLSTM cd MultiTaskConvLSTM # 2 Install minimal deps pip install -r requirements.txt # 3 Run inference (choose one variant) python veg/example_inference.py # or python noveg/example_inference.py ## Citation If you use this model, please cite: > Lilly Horvath-Makkos (2025). [title] [journal] BibTeX: bibtex @article{horvathmakkos2025, title={Title}, author={Horvath-Makkos, Lilly}, journal={Journal}, year={2025} }