Wanli
commited on
Commit
·
2d6cdf7
1
Parent(s):
13ef3c1
Add 'load_label' parameter for image classification models (#185)
Browse files* add 'load_label' parameter for image classification models
* move load_label flag to initializer
- demo.py +4 -1
- ppresnet.py +3 -2
demo.py
CHANGED
|
@@ -37,13 +37,16 @@ parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
|
| 37 |
{:d}: TIM-VX + NPU,
|
| 38 |
{:d}: CANN + NPU
|
| 39 |
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
|
|
|
|
|
|
| 40 |
args = parser.parse_args()
|
| 41 |
|
| 42 |
if __name__ == '__main__':
|
| 43 |
backend_id = backend_target_pairs[args.backend_target][0]
|
| 44 |
target_id = backend_target_pairs[args.backend_target][1]
|
|
|
|
| 45 |
# Instantiate ResNet
|
| 46 |
-
model = PPResNet(modelPath=args.model, backendId=backend_id, targetId=target_id)
|
| 47 |
|
| 48 |
# Read image and get a 224x224 crop from a 256x256 resized
|
| 49 |
image = cv.imread(args.input)
|
|
|
|
| 37 |
{:d}: TIM-VX + NPU,
|
| 38 |
{:d}: CANN + NPU
|
| 39 |
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
| 40 |
+
parser.add_argument('--top_k', type=int, default=1,
|
| 41 |
+
help='Usage: Get top k predictions.')
|
| 42 |
args = parser.parse_args()
|
| 43 |
|
| 44 |
if __name__ == '__main__':
|
| 45 |
backend_id = backend_target_pairs[args.backend_target][0]
|
| 46 |
target_id = backend_target_pairs[args.backend_target][1]
|
| 47 |
+
top_k = args.top_k
|
| 48 |
# Instantiate ResNet
|
| 49 |
+
model = PPResNet(modelPath=args.model, topK=top_k, backendId=backend_id, targetId=target_id)
|
| 50 |
|
| 51 |
# Read image and get a 224x224 crop from a 256x256 resized
|
| 52 |
image = cv.imread(args.input)
|
ppresnet.py
CHANGED
|
@@ -9,10 +9,11 @@ import numpy as np
|
|
| 9 |
import cv2 as cv
|
| 10 |
|
| 11 |
class PPResNet:
|
| 12 |
-
def __init__(self, modelPath, topK=1, backendId=0, targetId=0):
|
| 13 |
self._modelPath = modelPath
|
| 14 |
assert topK >= 1
|
| 15 |
self._topK = topK
|
|
|
|
| 16 |
self._backendId = backendId
|
| 17 |
self._targetId = targetId
|
| 18 |
|
|
@@ -69,7 +70,7 @@ class PPResNet:
|
|
| 69 |
for ob in outputBlob:
|
| 70 |
class_id_list = ob.argsort()[::-1][:self._topK]
|
| 71 |
batched_class_id_list.append(class_id_list)
|
| 72 |
-
if len(self._labels) > 0:
|
| 73 |
batched_predicted_labels = []
|
| 74 |
for class_id_list in batched_class_id_list:
|
| 75 |
predicted_labels = []
|
|
|
|
| 9 |
import cv2 as cv
|
| 10 |
|
| 11 |
class PPResNet:
|
| 12 |
+
def __init__(self, modelPath, topK=1, loadLabel=True, backendId=0, targetId=0):
|
| 13 |
self._modelPath = modelPath
|
| 14 |
assert topK >= 1
|
| 15 |
self._topK = topK
|
| 16 |
+
self._load_label = loadLabel
|
| 17 |
self._backendId = backendId
|
| 18 |
self._targetId = targetId
|
| 19 |
|
|
|
|
| 70 |
for ob in outputBlob:
|
| 71 |
class_id_list = ob.argsort()[::-1][:self._topK]
|
| 72 |
batched_class_id_list.append(class_id_list)
|
| 73 |
+
if len(self._labels) > 0 and self._load_label:
|
| 74 |
batched_predicted_labels = []
|
| 75 |
for class_id_list in batched_class_id_list:
|
| 76 |
predicted_labels = []
|