Papers
arxiv:2509.25127

Score Distillation of Flow Matching Models

Published on Sep 29
Authors:
,
,
,
,
,
,
,

Abstract

Score distillation is shown to be effective for accelerating text-to-image generation in flow matching models, providing a unified approach with diffusion models.

AI-generated summary

Diffusion models achieve high-quality image generation but are limited by slow iterative sampling. Distillation methods alleviate this by enabling one- or few-step generation. Flow matching, originally introduced as a distinct framework, has since been shown to be theoretically equivalent to diffusion under Gaussian assumptions, raising the question of whether distillation techniques such as score distillation transfer directly. We provide a simple derivation -- based on Bayes' rule and conditional expectations -- that unifies Gaussian diffusion and flow matching without relying on ODE/SDE formulations. Building on this view, we extend Score identity Distillation (SiD) to pretrained text-to-image flow-matching models, including SANA, SD3-Medium, SD3.5-Medium/Large, and FLUX.1-dev, all with DiT backbones. Experiments show that, with only modest flow-matching- and DiT-specific adjustments, SiD works out of the box across these models, in both data-free and data-aided settings, without requiring teacher finetuning or architectural changes. This provides the first systematic evidence that score distillation applies broadly to text-to-image flow matching models, resolving prior concerns about stability and soundness and unifying acceleration techniques across diffusion- and flow-based generators. We will make the PyTorch implementation publicly available.

Community

Sign up or log in to comment

Models citing this paper 16

Browse 16 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2509.25127 in a dataset README.md to link it from this page.

Spaces citing this paper 11

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.