10 Cascade Speculative Drafting for Even Faster LLM Inference Speculative decoding enhances the efficiency of large language models (LLMs) by leveraging a draft model to draft for a larger target model to review. However, drafting in speculative decoding involves slow autoregressive generation and generating tokens of different importance with the same time allocation. These two inefficiencies lead to its suboptimal performance. To address this issue, we introduce Cascade Speculative Drafting (CS. Drafting), a novel approach that employs two types of cascades. The Vertical Cascade eliminates autoregressive generation from neural models. The Horizontal Cascade constitutes efficient time allocation in drafting with its optimality supported by our theoretical analysis. Combining both cascades, our CS. Drafting algorithm has achieved up to 72 percent additional speedup over speculative decoding in our experiments while keeping the same output distribution. 6 authors · Dec 18, 2023 1
- Polychrony as Chinampas In this paper, we study the flow of signals through linear paths with the nonlinear condition that a node emits a signal when it receives external stimuli or when two incoming signals from other nodes arrive coincidentally with a combined amplitude above a fixed threshold. Sets of such nodes form a polychrony group and can sometimes lead to cascades. In the context of this work, cascades are polychrony groups in which the number of nodes activated as a consequence of other nodes is greater than the number of externally activated nodes. The difference between these two numbers is the so-called profit. Given the initial conditions, we predict the conditions for a vertex to activate at a prescribed time and provide an algorithm to efficiently reconstruct a cascade. We develop a dictionary between polychrony groups and graph theory. We call the graph corresponding to a cascade a chinampa. This link leads to a topological classification of chinampas. We enumerate the chinampas of profits zero and one and the description of a family of chinampas isomorphic to a family of partially ordered sets, which implies that the enumeration problem of this family is equivalent to computing the Stanley-order polynomials of those partially ordered sets. 8 authors · Mar 28, 2021 1