3 FastTD3: Simple, Fast, and Capable Reinforcement Learning for Humanoid Control Reinforcement learning (RL) has driven significant progress in robotics, but its complexity and long training times remain major bottlenecks. In this report, we introduce FastTD3, a simple, fast, and capable RL algorithm that significantly speeds up training for humanoid robots in popular suites such as HumanoidBench, IsaacLab, and MuJoCo Playground. Our recipe is remarkably simple: we train an off-policy TD3 agent with several modifications -- parallel simulation, large-batch updates, a distributional critic, and carefully tuned hyperparameters. FastTD3 solves a range of HumanoidBench tasks in under 3 hours on a single A100 GPU, while remaining stable during training. We also provide a lightweight and easy-to-use implementation of FastTD3 to accelerate RL research in robotics. 6 authors · May 28 2
- Reinforcement Learning with Action Sequence for Data-Efficient Robot Learning Training reinforcement learning (RL) agents on robotic tasks typically requires a large number of training samples. This is because training data often consists of noisy trajectories, whether from exploration or human-collected demonstrations, making it difficult to learn value functions that understand the effect of taking each action. On the other hand, recent behavior-cloning (BC) approaches have shown that predicting a sequence of actions enables policies to effectively approximate noisy, multi-modal distributions of expert demonstrations. Can we use a similar idea for improving RL on robotic tasks? In this paper, we introduce a novel RL algorithm that learns a critic network that outputs Q-values over a sequence of actions. By explicitly training the value functions to learn the consequence of executing a series of current and future actions, our algorithm allows for learning useful value functions from noisy trajectories. We study our algorithm across various setups with sparse and dense rewards, and with or without demonstrations, spanning mobile bi-manual manipulation, whole-body control, and tabletop manipulation tasks from BiGym, HumanoidBench, and RLBench. We find that, by learning the critic network with action sequences, our algorithm outperforms various RL and BC baselines, in particular on challenging humanoid control tasks. 2 authors · Nov 18, 2024
8 SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simplicity bias, guiding models toward simple and generalizable solutions. However, in deep RL, designing and scaling up networks have been less explored. Motivated by this opportunity, we present SimBa, an architecture designed to scale up parameters in deep RL by injecting a simplicity bias. SimBa consists of three components: (i) an observation normalization layer that standardizes inputs with running statistics, (ii) a residual feedforward block to provide a linear pathway from the input to output, and (iii) a layer normalization to control feature magnitudes. By scaling up parameters with SimBa, the sample efficiency of various deep RL algorithms-including off-policy, on-policy, and unsupervised methods-is consistently improved. Moreover, solely by integrating SimBa architecture into SAC, it matches or surpasses state-of-the-art deep RL methods with high computational efficiency across DMC, MyoSuite, and HumanoidBench. These results demonstrate SimBa's broad applicability and effectiveness across diverse RL algorithms and environments. 10 authors · Oct 13, 2024 3
6 Entropy Regularizing Activation: Boosting Continuous Control, Large Language Models, and Image Classification with Activation as Entropy Constraints We propose ERA, a new paradigm that constrains the sampling entropy above given thresholds by applying specially designed activations to the outputs of models. Our approach demonstrates broad effectiveness across different domains: 1) for large language models(LLMs), boosting the AIME 2025 score for Qwen2.5-Math-7B by 37.4%; 2) for continuous control reinforcement learning agents, improving performance by more than 30% over strong baselines such as SAC on the challenging HumanoidBench; 3) for image classification, enhancing ImageNet top-1 accuracy by 0.69% for ResNet-50. These gains are achieved with a computational overhead of less than 7%. Our work validates output activation as a powerful tool for entropy control, opening a new direction for designing simpler and more robust algorithms. 4 authors · Oct 9 2