1 Full Page Handwriting Recognition via Image to Sequence Extraction We present a Neural Network based Handwritten Text Recognition (HTR) model architecture that can be trained to recognize full pages of handwritten or printed text without image segmentation. Being based on Image to Sequence architecture, it can extract text present in an image and then sequence it correctly without imposing any constraints regarding orientation, layout and size of text and non-text. Further, it can also be trained to generate auxiliary markup related to formatting, layout and content. We use character level vocabulary, thereby enabling language and terminology of any subject. The model achieves a new state-of-art in paragraph level recognition on the IAM dataset. When evaluated on scans of real world handwritten free form test answers - beset with curved and slanted lines, drawings, tables, math, chemistry and other symbols - it performs better than all commercially available HTR cloud APIs. It is deployed in production as part of a commercial web application. 2 authors · Mar 10, 2021
- AttentionHTR: Handwritten Text Recognition Based on Attention Encoder-Decoder Networks This work proposes an attention-based sequence-to-sequence model for handwritten word recognition and explores transfer learning for data-efficient training of HTR systems. To overcome training data scarcity, this work leverages models pre-trained on scene text images as a starting point towards tailoring the handwriting recognition models. ResNet feature extraction and bidirectional LSTM-based sequence modeling stages together form an encoder. The prediction stage consists of a decoder and a content-based attention mechanism. The effectiveness of the proposed end-to-end HTR system has been empirically evaluated on a novel multi-writer dataset Imgur5K and the IAM dataset. The experimental results evaluate the performance of the HTR framework, further supported by an in-depth analysis of the error cases. Source code and pre-trained models are available at https://github.com/dmitrijsk/AttentionHTR. 2 authors · Jan 23, 2022
2 IAM: A Comprehensive and Large-Scale Dataset for Integrated Argument Mining Tasks Traditionally, a debate usually requires a manual preparation process, including reading plenty of articles, selecting the claims, identifying the stances of the claims, seeking the evidence for the claims, etc. As the AI debate attracts more attention these years, it is worth exploring the methods to automate the tedious process involved in the debating system. In this work, we introduce a comprehensive and large dataset named IAM, which can be applied to a series of argument mining tasks, including claim extraction, stance classification, evidence extraction, etc. Our dataset is collected from over 1k articles related to 123 topics. Near 70k sentences in the dataset are fully annotated based on their argument properties (e.g., claims, stances, evidence, etc.). We further propose two new integrated argument mining tasks associated with the debate preparation process: (1) claim extraction with stance classification (CESC) and (2) claim-evidence pair extraction (CEPE). We adopt a pipeline approach and an end-to-end method for each integrated task separately. Promising experimental results are reported to show the values and challenges of our proposed tasks, and motivate future research on argument mining. 6 authors · Mar 23, 2022
2 DeepWriter: A Multi-Stream Deep CNN for Text-independent Writer Identification Text-independent writer identification is challenging due to the huge variation of written contents and the ambiguous written styles of different writers. This paper proposes DeepWriter, a deep multi-stream CNN to learn deep powerful representation for recognizing writers. DeepWriter takes local handwritten patches as input and is trained with softmax classification loss. The main contributions are: 1) we design and optimize multi-stream structure for writer identification task; 2) we introduce data augmentation learning to enhance the performance of DeepWriter; 3) we introduce a patch scanning strategy to handle text image with different lengths. In addition, we find that different languages such as English and Chinese may share common features for writer identification, and joint training can yield better performance. Experimental results on IAM and HWDB datasets show that our models achieve high identification accuracy: 99.01% on 301 writers and 97.03% on 657 writers with one English sentence input, 93.85% on 300 writers with one Chinese character input, which outperform previous methods with a large margin. Moreover, our models obtain accuracy of 98.01% on 301 writers with only 4 English alphabets as input. 2 authors · Jun 21, 2016
- HTR-VT: Handwritten Text Recognition with Vision Transformer We explore the application of Vision Transformer (ViT) for handwritten text recognition. The limited availability of labeled data in this domain poses challenges for achieving high performance solely relying on ViT. Previous transformer-based models required external data or extensive pre-training on large datasets to excel. To address this limitation, we introduce a data-efficient ViT method that uses only the encoder of the standard transformer. We find that incorporating a Convolutional Neural Network (CNN) for feature extraction instead of the original patch embedding and employ Sharpness-Aware Minimization (SAM) optimizer to ensure that the model can converge towards flatter minima and yield notable enhancements. Furthermore, our introduction of the span mask technique, which masks interconnected features in the feature map, acts as an effective regularizer. Empirically, our approach competes favorably with traditional CNN-based models on small datasets like IAM and READ2016. Additionally, it establishes a new benchmark on the LAM dataset, currently the largest dataset with 19,830 training text lines. The code is publicly available at: https://github.com/YutingLi0606/HTR-VT. 4 authors · Sep 13, 2024
2 Siamese based Neural Network for Offline Writer Identification on word level data Handwriting recognition is one of the desirable attributes of document comprehension and analysis. It is concerned with the documents writing style and characteristics that distinguish the authors. The diversity of text images, notably in images with varying handwriting, makes the process of learning good features difficult in cases where little data is available. In this paper, we propose a novel scheme to identify the author of a document based on the input word image. Our method is text independent and does not impose any constraint on the size of the input image under examination. To begin with, we detect crucial components in handwriting and extract regions surrounding them using Scale Invariant Feature Transform (SIFT). These patches are designed to capture individual writing features (including allographs, characters, or combinations of characters) that are likely to be unique for an individual writer. These features are then passed through a deep Convolutional Neural Network (CNN) in which the weights are learned by applying the concept of Similarity learning using Siamese network. Siamese network enhances the discrimination power of CNN by mapping similarity between different pairs of input image. Features learned at different scales of the extracted SIFT key-points are encoded using Sparse PCA, each components of the Sparse PCA is assigned a saliency score signifying its level of significance in discriminating different writers effectively. Finally, the weighted Sparse PCA corresponding to each SIFT key-points is combined to arrive at a final classification score for each writer. The proposed algorithm was evaluated on two publicly available databases (namely IAM and CVL) and is able to achieve promising result, when compared with other deep learning based algorithm. 2 authors · Nov 17, 2022
1 IAM: Enhancing RGB-D Instance Segmentation with New Benchmarks Image segmentation is a vital task for providing human assistance and enhancing autonomy in our daily lives. In particular, RGB-D segmentation-leveraging both visual and depth cues-has attracted increasing attention as it promises richer scene understanding than RGB-only methods. However, most existing efforts have primarily focused on semantic segmentation and thus leave a critical gap. There is a relative scarcity of instance-level RGB-D segmentation datasets, which restricts current methods to broad category distinctions rather than fully capturing the fine-grained details required for recognizing individual objects. To bridge this gap, we introduce three RGB-D instance segmentation benchmarks, distinguished at the instance level. These datasets are versatile, supporting a wide range of applications from indoor navigation to robotic manipulation. In addition, we present an extensive evaluation of various baseline models on these benchmarks. This comprehensive analysis identifies both their strengths and shortcomings, guiding future work toward more robust, generalizable solutions. Finally, we propose a simple yet effective method for RGB-D data integration. Extensive evaluations affirm the effectiveness of our approach, offering a robust framework for advancing toward more nuanced scene understanding. 4 authors · Jan 3, 2025
1 DANIEL: A fast Document Attention Network for Information Extraction and Labelling of handwritten documents Information extraction from handwritten documents involves traditionally three distinct steps: Document Layout Analysis, Handwritten Text Recognition, and Named Entity Recognition. Recent approaches have attempted to integrate these steps into a single process using fully end-to-end architectures. Despite this, these integrated approaches have not yet matched the performance of language models, when applied to information extraction in plain text. In this paper, we introduce DANIEL (Document Attention Network for Information Extraction and Labelling), a fully end-to-end architecture integrating a language model and designed for comprehensive handwritten document understanding. DANIEL performs layout recognition, handwriting recognition, and named entity recognition on full-page documents. Moreover, it can simultaneously learn across multiple languages, layouts, and tasks. For named entity recognition, the ontology to be applied can be specified via the input prompt. The architecture employs a convolutional encoder capable of processing images of any size without resizing, paired with an autoregressive decoder based on a transformer-based language model. DANIEL achieves competitive results on four datasets, including a new state-of-the-art performance on RIMES 2009 and M-POPP for Handwriting Text Recognition, and IAM NER for Named Entity Recognition. Furthermore, DANIEL is much faster than existing approaches. We provide the source code and the weights of the trained models at https://github.com/Shulk97/daniel. 3 authors · Jul 12, 2024
2 Key-value information extraction from full handwritten pages We propose a Transformer-based approach for information extraction from digitized handwritten documents. Our approach combines, in a single model, the different steps that were so far performed by separate models: feature extraction, handwriting recognition and named entity recognition. We compare this integrated approach with traditional two-stage methods that perform handwriting recognition before named entity recognition, and present results at different levels: line, paragraph, and page. Our experiments show that attention-based models are especially interesting when applied on full pages, as they do not require any prior segmentation step. Finally, we show that they are able to learn from key-value annotations: a list of important words with their corresponding named entities. We compare our models to state-of-the-art methods on three public databases (IAM, ESPOSALLES, and POPP) and outperform previous performances on all three datasets. 3 authors · Apr 26, 2023
2 Character Queries: A Transformer-based Approach to On-Line Handwritten Character Segmentation On-line handwritten character segmentation is often associated with handwriting recognition and even though recognition models include mechanisms to locate relevant positions during the recognition process, it is typically insufficient to produce a precise segmentation. Decoupling the segmentation from the recognition unlocks the potential to further utilize the result of the recognition. We specifically focus on the scenario where the transcription is known beforehand, in which case the character segmentation becomes an assignment problem between sampling points of the stylus trajectory and characters in the text. Inspired by the k-means clustering algorithm, we view it from the perspective of cluster assignment and present a Transformer-based architecture where each cluster is formed based on a learned character query in the Transformer decoder block. In order to assess the quality of our approach, we create character segmentation ground truths for two popular on-line handwriting datasets, IAM-OnDB and HANDS-VNOnDB, and evaluate multiple methods on them, demonstrating that our approach achieves the overall best results. 5 authors · Sep 6, 2023