2 MMC: Advancing Multimodal Chart Understanding with Large-scale Instruction Tuning With the rapid development of large language models (LLMs) and their integration into large multimodal models (LMMs), there has been impressive progress in zero-shot completion of user-oriented vision-language tasks. However, a gap remains in the domain of chart image understanding due to the distinct abstract components in charts. To address this, we introduce a large-scale MultiModal Chart Instruction (MMC-Instruction) dataset comprising 600k instances supporting diverse tasks and chart types. Leveraging this data, we develop MultiModal Chart Assistant (MMCA), an LMM that achieves state-of-the-art performance on existing chart QA benchmarks. Recognizing the need for a comprehensive evaluation of LMM chart understanding, we also propose a MultiModal Chart Benchmark (MMC-Benchmark), a comprehensive human-annotated benchmark with 9 distinct tasks evaluating reasoning capabilities over charts. Extensive experiments on MMC-Benchmark reveal the limitations of existing LMMs on correctly interpreting charts, even for the most recent GPT-4V model. Our work provides an instruction-tuning methodology and benchmark to advance multimodal understanding of charts. 8 authors · Nov 15, 2023 1
- Multilingual Multimodal Software Developer for Code Generation The rapid advancement of Large Language Models (LLMs) has significantly improved code generation, yet most models remain text-only, neglecting crucial visual aids like diagrams and flowcharts used in real-world software development. To bridge this gap, we introduce MM-Coder, a Multilingual Multimodal software developer. MM-Coder integrates visual design inputs-Unified Modeling Language (UML) diagrams and flowcharts (termed Visual Workflow)-with textual instructions to enhance code generation accuracy and architectural alignment. To enable this, we developed MMc-Instruct, a diverse multimodal instruction-tuning dataset including visual-workflow-based code generation, allowing MM-Coder to synthesize textual and graphical information like human developers, distinct from prior work on narrow tasks. Furthermore, we introduce MMEval, a new benchmark for evaluating multimodal code generation, addressing existing text-only limitations. Our evaluations using MMEval highlight significant remaining challenges for models in precise visual information capture, instruction following, and advanced programming knowledge. Our work aims to revolutionize industrial programming by enabling LLMs to interpret and implement complex specifications conveyed through both text and visual designs. 15 authors · Jul 11