Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePIER: A Novel Metric for Evaluating What Matters in Code-Switching
Code-switching, the alternation of languages within a single discourse, presents a significant challenge for Automatic Speech Recognition. Despite the unique nature of the task, performance is commonly measured with established metrics such as Word-Error-Rate (WER). However, in this paper, we question whether these general metrics accurately assess performance on code-switching. Specifically, using both Connectionist-Temporal-Classification and Encoder-Decoder models, we show fine-tuning on non-code-switched data from both matrix and embedded language improves classical metrics on code-switching test sets, although actual code-switched words worsen (as expected). Therefore, we propose Point-of-Interest Error Rate (PIER), a variant of WER that focuses only on specific words of interest. We instantiate PIER on code-switched utterances and show that this more accurately describes the code-switching performance, showing huge room for improvement in future work. This focused evaluation allows for a more precise assessment of model performance, particularly in challenging aspects such as inter-word and intra-word code-switching.
SwitchLingua: The First Large-Scale Multilingual and Multi-Ethnic Code-Switching Dataset
Code-switching (CS) is the alternating use of two or more languages within a conversation or utterance, often influenced by social context and speaker identity. This linguistic phenomenon poses challenges for Automatic Speech Recognition (ASR) systems, which are typically designed for a single language and struggle to handle multilingual inputs. The growing global demand for multilingual applications, including Code-Switching ASR (CSASR), Text-to-Speech (CSTTS), and Cross-Lingual Information Retrieval (CLIR), highlights the inadequacy of existing monolingual datasets. Although some code-switching datasets exist, most are limited to bilingual mixing within homogeneous ethnic groups, leaving a critical need for a large-scale, diverse benchmark akin to ImageNet in computer vision. To bridge this gap, we introduce LinguaMaster, a multi-agent collaboration framework specifically designed for efficient and scalable multilingual data synthesis. Leveraging this framework, we curate SwitchLingua, the first large-scale multilingual and multi-ethnic code-switching dataset, including: (1) 420K CS textual samples across 12 languages, and (2) over 80 hours of audio recordings from 174 speakers representing 18 countries/regions and 63 racial/ethnic backgrounds, based on the textual data. This dataset captures rich linguistic and cultural diversity, offering a foundational resource for advancing multilingual and multicultural research. Furthermore, to address the issue that existing ASR evaluation metrics lack sensitivity to code-switching scenarios, we propose the Semantic-Aware Error Rate (SAER), a novel evaluation metric that incorporates semantic information, providing a more accurate and context-aware assessment of system performance.
Enhancing Multilingual Language Models for Code-Switched Input Data
Code-switching, or alternating between languages within a single conversation, presents challenges for multilingual language models on NLP tasks. This research investigates if pre-training Multilingual BERT (mBERT) on code-switched datasets improves the model's performance on critical NLP tasks such as part of speech tagging, sentiment analysis, named entity recognition, and language identification. We use a dataset of Spanglish tweets for pre-training and evaluate the pre-trained model against a baseline model. Our findings show that our pre-trained mBERT model outperforms or matches the baseline model in the given tasks, with the most significant improvements seen for parts of speech tagging. Additionally, our latent analysis uncovers more homogenous English and Spanish embeddings for language identification tasks, providing insights for future modeling work. This research highlights potential for adapting multilingual LMs for code-switched input data in order for advanced utility in globalized and multilingual contexts. Future work includes extending experiments to other language pairs, incorporating multiform data, and exploring methods for better understanding context-dependent code-switches.
Improving Low Resource Code-switched ASR using Augmented Code-switched TTS
Building Automatic Speech Recognition (ASR) systems for code-switched speech has recently gained renewed attention due to the widespread use of speech technologies in multilingual communities worldwide. End-to-end ASR systems are a natural modeling choice due to their ease of use and superior performance in monolingual settings. However, it is well known that end-to-end systems require large amounts of labeled speech. In this work, we investigate improving code-switched ASR in low resource settings via data augmentation using code-switched text-to-speech (TTS) synthesis. We propose two targeted techniques to effectively leverage TTS speech samples: 1) Mixup, an existing technique to create new training samples via linear interpolation of existing samples, applied to TTS and real speech samples, and 2) a new loss function, used in conjunction with TTS samples, to encourage code-switched predictions. We report significant improvements in ASR performance achieving absolute word error rate (WER) reductions of up to 5%, and measurable improvement in code switching using our proposed techniques on a Hindi-English code-switched ASR task.
SwitchGPT: Adapting Large Language Models for Non-Text Outputs
Large Language Models (LLMs), primarily trained on text-based datasets, exhibit exceptional proficiencies in understanding and executing complex linguistic instructions via text outputs. However, they falter when requests to generate non-text ones. Concurrently, modality conversion models, such as text-to-image, despite generating high-quality images, suffer from a lack of extensive textual pretraining. As a result, these models are only capable of accommodating specific image descriptions rather than comprehending more complex instructions. To bridge this gap, we propose a novel approach, \methodname, from a modality conversion perspective that evolves a text-based LLM into a multi-modal one. We specifically employ a minimal dataset to instruct LLMs to recognize the intended output modality as directed by the instructions. Consequently, the adapted LLM can effectively summon various off-the-shelf modality conversion models from the model zoos to generate non-text responses. This circumvents the necessity for complicated pretraining that typically requires immense quantities of paired multi-modal data, while simultaneously inheriting the extensive knowledge of LLMs and the ability of high-quality generative models. To evaluate and compare the adapted multi-modal LLM with its traditional counterparts, we have constructed a multi-modal instruction benchmark that solicits diverse modality outputs. The experiment results reveal that, with minimal training, LLMs can be conveniently adapted to comprehend requests for non-text responses, thus achieving higher flexibility in multi-modal scenarios. Code and data will be made available at https://github.com/xinke-wang/SwitchGPT.
Optimizing ASR for Catalan-Spanish Code-Switching: A Comparative Analysis of Methodologies
Code-switching (CS), the alternating use of two or more languages, challenges automatic speech recognition (ASR) due to scarce training data and linguistic similarities. The lack of dedicated CS datasets limits ASR performance, as most models rely on monolingual or mixed-language corpora that fail to reflect real-world CS patterns. This issue is critical in multilingual societies where CS occurs in informal and formal settings. A key example is Catalan-Spanish CS, widely used in media and parliamentary speeches. In this work, we improve ASR for Catalan-Spanish CS by exploring three strategies: (1) generating synthetic CS data, (2) concatenating monolingual audio, and (3) leveraging real CS data with language tokens. We extract CS data from Catalan speech corpora and fine-tune OpenAI's Whisper models, making them available on Hugging Face. Results show that combining a modest amount of synthetic CS data with the dominant language token yields the best transcription performance.
Code-Switched Text Synthesis in Unseen Language Pairs
Existing efforts on text synthesis for code-switching mostly require training on code-switched texts in the target language pairs, limiting the deployment of the models to cases lacking code-switched data. In this work, we study the problem of synthesizing code-switched texts for language pairs absent from the training data. We introduce GLOSS, a model built on top of a pre-trained multilingual machine translation model (PMMTM) with an additional code-switching module. This module, either an adapter or extra prefixes, learns code-switching patterns from code-switched data during training, while the primary component of GLOSS, i.e., the PMMTM, is frozen. The design of only adjusting the code-switching module prevents our model from overfitting to the constrained training data for code-switching. Hence, GLOSS exhibits the ability to generalize and synthesize code-switched texts across a broader spectrum of language pairs. Additionally, we develop a self-training algorithm on target language pairs further to enhance the reliability of GLOSS. Automatic evaluations on four language pairs show that GLOSS achieves at least 55% relative BLEU and METEOR scores improvements compared to strong baselines. Human evaluations on two language pairs further validate the success of GLOSS.
VisCodex: Unified Multimodal Code Generation via Merging Vision and Coding Models
Multimodal large language models (MLLMs) have significantly advanced the integration of visual and textual understanding. However, their ability to generate code from multimodal inputs remains limited. In this work, we introduce VisCodex, a unified framework that seamlessly merges vision and coding language models to empower MLLMs with strong multimodal code generation abilities. Leveraging a task vector-based model merging technique, we integrate a state-of-the-art coding LLM into a strong vision-language backbone, while preserving both visual comprehension and advanced coding skills. To support training and evaluation, we introduce the Multimodal Coding Dataset (MCD), a large-scale and diverse collection of 598k samples, including high-quality HTML code, chart image-code pairs, image-augmented StackOverflow QA, and algorithmic problems. Furthermore, we propose InfiBench-V, a novel and challenging benchmark specifically designed to assess models on visually-rich, real-world programming questions that demand a nuanced understanding of both textual and visual contexts. Extensive experiments show that VisCodex achieves state-of-the-art performance among open-source MLLMs and approaches proprietary models like GPT-4o, highlighting the effectiveness of our model merging strategy and new datasets.
Optimizing Bilingual Neural Transducer with Synthetic Code-switching Text Generation
Code-switching describes the practice of using more than one language in the same sentence. In this study, we investigate how to optimize a neural transducer based bilingual automatic speech recognition (ASR) model for code-switching speech. Focusing on the scenario where the ASR model is trained without supervised code-switching data, we found that semi-supervised training and synthetic code-switched data can improve the bilingual ASR system on code-switching speech. We analyze how each of the neural transducer's encoders contributes towards code-switching performance by measuring encoder-specific recall values, and evaluate our English/Mandarin system on the ASCEND data set. Our final system achieves 25% mixed error rate (MER) on the ASCEND English/Mandarin code-switching test set -- reducing the MER by 2.1% absolute compared to the previous literature -- while maintaining good accuracy on the monolingual test sets.
Reducing language context confusion for end-to-end code-switching automatic speech recognition
Code-switching deals with alternative languages in communication process. Training end-to-end (E2E) automatic speech recognition (ASR) systems for code-switching is especially challenging as code-switching training data are always insufficient to combat the increased multilingual context confusion due to the presence of more than one language. We propose a language-related attention mechanism to reduce multilingual context confusion for the E2E code-switching ASR model based on the Equivalence Constraint (EC) Theory. The linguistic theory requires that any monolingual fragment that occurs in the code-switching sentence must occur in one of the monolingual sentences. The theory establishes a bridge between monolingual data and code-switching data. We leverage this linguistics theory to design the code-switching E2E ASR model. The proposed model efficiently transfers language knowledge from rich monolingual data to improve the performance of the code-switching ASR model. We evaluate our model on ASRU 2019 Mandarin-English code-switching challenge dataset. Compared to the baseline model, our proposed model achieves a 17.12% relative error reduction.
CS-Dialogue: A 104-Hour Dataset of Spontaneous Mandarin-English Code-Switching Dialogues for Speech Recognition
Code-switching (CS), the alternation between two or more languages within a single conversation, presents significant challenges for automatic speech recognition (ASR) systems. Existing Mandarin-English code-switching datasets often suffer from limitations in size, spontaneity, and the lack of full-length dialogue recordings with transcriptions, hindering the development of robust ASR models for real-world conversational scenarios. This paper introduces CS-Dialogue, a novel large-scale Mandarin-English code-switching speech dataset comprising 104 hours of spontaneous conversations from 200 speakers. Unlike previous datasets, CS-Dialogue provides full-length dialogue recordings with complete transcriptions, capturing naturalistic code-switching patterns in continuous speech. We describe the data collection and annotation processes, present detailed statistics of the dataset, and establish benchmark ASR performance using state-of-the-art models. Our experiments, using Transformer, Conformer, and Branchformer, demonstrate the challenges of code-switching ASR, and show that existing pre-trained models such as Whisper still have the space to improve. The CS-Dialogue dataset will be made freely available for all academic purposes.
Simple yet Effective Code-Switching Language Identification with Multitask Pre-Training and Transfer Learning
Code-switching, also called code-mixing, is the linguistics phenomenon where in casual settings, multilingual speakers mix words from different languages in one utterance. Due to its spontaneous nature, code-switching is extremely low-resource, which makes it a challenging problem for language and speech processing tasks. In such contexts, Code-Switching Language Identification (CSLID) becomes a difficult but necessary task if we want to maximally leverage existing monolingual tools for other tasks. In this work, we propose two novel approaches toward improving language identification accuracy on an English-Mandarin child-directed speech dataset. Our methods include a stacked Residual CNN+GRU model and a multitask pre-training approach to use Automatic Speech Recognition (ASR) as an auxiliary task for CSLID. Due to the low-resource nature of code-switching, we also employ careful silver data creation using monolingual corpora in both languages and up-sampling as data augmentation. We focus on English-Mandarin code-switched data, but our method works on any language pair. Our best model achieves a balanced accuracy of 0.781 on a real English-Mandarin code-switching child-directed speech corpus and outperforms the previous baseline by 55.3%.
4M: Massively Multimodal Masked Modeling
Current machine learning models for vision are often highly specialized and limited to a single modality and task. In contrast, recent large language models exhibit a wide range of capabilities, hinting at a possibility for similarly versatile models in computer vision. In this paper, we take a step in this direction and propose a multimodal training scheme called 4M. It consists of training a single unified Transformer encoder-decoder using a masked modeling objective across a wide range of input/output modalities - including text, images, geometric, and semantic modalities, as well as neural network feature maps. 4M achieves scalability by unifying the representation space of all modalities through mapping them into discrete tokens and performing multimodal masked modeling on a small randomized subset of tokens. 4M leads to models that exhibit several key capabilities: (1) they can perform a diverse set of vision tasks out of the box, (2) they excel when fine-tuned for unseen downstream tasks or new input modalities, and (3) they can function as a generative model that can be conditioned on arbitrary modalities, enabling a wide variety of expressive multimodal editing capabilities with remarkable flexibility. Through experimental analyses, we demonstrate the potential of 4M for training versatile and scalable foundation models for vision tasks, setting the stage for further exploration in multimodal learning for vision and other domains.
Balancing Multimodal Training Through Game-Theoretic Regularization
Multimodal learning holds promise for richer information extraction by capturing dependencies across data sources. Yet, current training methods often underperform due to modality competition, a phenomenon where modalities contend for training resources leaving some underoptimized. This raises a pivotal question: how can we address training imbalances, ensure adequate optimization across all modalities, and achieve consistent performance improvements as we transition from unimodal to multimodal data? This paper proposes the Multimodal Competition Regularizer (MCR), inspired by a mutual information (MI) decomposition designed to prevent the adverse effects of competition in multimodal training. Our key contributions are: 1) A game-theoretic framework that adaptively balances modality contributions by encouraging each to maximize its informative role in the final prediction 2) Refining lower and upper bounds for each MI term to enhance the extraction of both task-relevant unique and shared information across modalities. 3) Proposing latent space permutations for conditional MI estimation, significantly improving computational efficiency. MCR outperforms all previously suggested training strategies and simple baseline, clearly demonstrating that training modalities jointly leads to important performance gains on both synthetic and large real-world datasets. We release our code and models at https://github.com/kkontras/MCR.
VITA-1.5: Towards GPT-4o Level Real-Time Vision and Speech Interaction
Recent Multimodal Large Language Models (MLLMs) have typically focused on integrating visual and textual modalities, with less emphasis placed on the role of speech in enhancing interaction. However, speech plays a crucial role in multimodal dialogue systems, and implementing high-performance in both vision and speech tasks remains a significant challenge due to the fundamental modality differences. In this paper, we propose a carefully designed multi-stage training methodology that progressively trains LLM to understand both visual and speech information, ultimately enabling fluent vision and speech interaction. Our approach not only preserves strong vision-language capacity, but also enables efficient speech-to-speech dialogue capabilities without separate ASR and TTS modules, significantly accelerating multimodal end-to-end response speed. By comparing our method against state-of-the-art counterparts across benchmarks for image, video, and speech tasks, we demonstrate that our model is equipped with both strong visual and speech capabilities, making near real-time vision and speech interaction.
Contextual Code Switching for Machine Translation using Language Models
Large language models (LLMs) have exerted a considerable impact on diverse language-related tasks in recent years. Their demonstrated state-of-the-art performance is achieved through methodologies such as zero-shot or few-shot prompting. These models undergo training on extensive datasets that encompass segments of the Internet and subsequently undergo fine-tuning tailored to specific tasks. Notably, they exhibit proficiency in tasks such as translation, summarization, question answering, and creative writing, even in the absence of explicit training for those particular tasks. While they have shown substantial improvement in the multilingual tasks their performance in the code switching, especially for machine translation remains relatively uncharted. In this paper, we present an extensive study on the code switching task specifically for the machine translation task comparing multiple LLMs. Our results indicate that despite the LLMs having promising results in the certain tasks, the models with relatively lesser complexity outperform the multilingual large language models in the machine translation task. We posit that the efficacy of multilingual large language models in contextual code switching is constrained by their training methodologies. In contrast, relatively smaller models, when trained and fine-tuned on bespoke datasets, may yield superior results in comparison to the majority of multilingual models.
VinciCoder: Unifying Multimodal Code Generation via Coarse-to-fine Visual Reinforcement Learning
Multimodal code generation has garnered significant interest within the research community. Despite the notable success of recent vision-language models (VLMs) on specialized tasks like chart-to-code generation, their reliance on single-task training regimens fosters a narrow paradigm that hinders the development of generalized VIsioN Code Intelligence. In this work, we introduce VinciCoder, a unified multimodal code generation model that addresses this limitation via a two-stage training framework. We begin by constructing a large-scale Supervised Finetuning (SFT) corpus comprising 1.6M image-code pairs for tasks involving direct code generation and visual-based code refinement. Subsequently, we introduce a Visual Reinforcement Learning (ViRL) strategy, which employs a coarse-to-fine reward mechanism to improve visual fidelity by calculating visual similarity across local and global image patches. Extensive experiments on diverse multimodal code generation benchmarks demonstrate that VinciCoder achieves state-of-the-art performance, surpassing recent open-source models. The ablation study further validates the effectiveness of our proposed coarse-to-fine ViRL strategy. The data, code and model is available at https://github.com/DocTron-hub/VinciCoder.
CodeT5+: Open Code Large Language Models for Code Understanding and Generation
Large language models (LLMs) pretrained on vast source code have achieved prominent progress in code intelligence. However, existing code LLMs have two main limitations in terms of architecture and pretraining tasks. First, they often adopt a specific architecture (encoder-only or decoder-only) or rely on a unified encoder-decoder network for different downstream tasks. The former paradigm is limited by inflexibility in applications while in the latter, the model is treated as a single system for all tasks, leading to suboptimal performance on a subset of tasks. Secondly, they often employ a limited set of pretraining objectives which might not be relevant to some downstream tasks and hence result in substantial performance degrade. To address these limitations, we propose ``CodeT5+'', a family of encoder-decoder LLMs for code in which component modules can be flexibly combined to suit a wide range of downstream code tasks. Such flexibility is enabled by our proposed mixture of pretraining objectives to mitigate the pretrain-finetune discrepancy. These objectives cover span denoising, contrastive learning, text-code matching, and causal LM pretraining tasks, on both unimodal and bimodal multilingual code corpora. Furthermore, we propose to initialize CodeT5+ with frozen off-the-shelf LLMs without training from scratch to efficiently scale up our models, and explore instruction-tuning to align with natural language instructions. We extensively evaluate CodeT5+ on over 20 code-related benchmarks in different settings, including zero-shot, finetuning, and instruction-tuning. We observe state-of-the-art (SoTA) model performance on various code-related tasks, such as code generation and completion, math programming, and text-to-code retrieval tasks. Particularly, our instruction-tuned CodeT5+ 16B achieves new SoTA results on HumanEval code generation task against other open code LLMs.
MathCoder-VL: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning
Natural language image-caption datasets, widely used for training Large Multimodal Models, mainly focus on natural scenarios and overlook the intricate details of mathematical figures that are critical for problem-solving, hindering the advancement of current LMMs in multimodal mathematical reasoning. To this end, we propose leveraging code as supervision for cross-modal alignment, since code inherently encodes all information needed to generate corresponding figures, establishing a precise connection between the two modalities. Specifically, we co-develop our image-to-code model and dataset with model-in-the-loop approach, resulting in an image-to-code model, FigCodifier and ImgCode-8.6M dataset, the largest image-code dataset to date. Furthermore, we utilize FigCodifier to synthesize novel mathematical figures and then construct MM-MathInstruct-3M, a high-quality multimodal math instruction fine-tuning dataset. Finally, we present MathCoder-VL, trained with ImgCode-8.6M for cross-modal alignment and subsequently fine-tuned on MM-MathInstruct-3M for multimodal math problem solving. Our model achieves a new open-source SOTA across all six metrics. Notably, it surpasses GPT-4o and Claude 3.5 Sonnet in the geometry problem-solving subset of MathVista, achieving improvements of 8.9% and 9.2%. The dataset and models will be released at https://github.com/mathllm/MathCoder.
CS3-Bench: Evaluating and Enhancing Speech-to-Speech LLMs for Mandarin-English Code-Switching
The advancement of multimodal large language models has accelerated the development of speech-to-speech interaction systems. While natural monolingual interaction has been achieved, we find existing models exhibit deficiencies in language alignment. In our proposed Code-Switching Speech-to-Speech Benchmark (CS3-Bench), experiments on 7 mainstream models demonstrate a relative performance drop of up to 66% in knowledge-intensive question answering and varying degrees of misunderstanding in open-ended conversations. Starting from a model with severe performance deterioration, we propose both data constructions and training approaches to improve the language alignment capabilities, specifically employing Chain of Recognition (CoR) to enhance understanding and Keyword Highlighting (KH) to guide generation. Our approach improves the knowledge accuracy from 25.14% to 46.13%, with open-ended understanding rate from 64.5% to 86.5%, and significantly reduces pronunciation errors in the secondary language. CS3-Bench is available at https://huggingface.co/datasets/VocalNet/CS3-Bench.
Thinking with Programming Vision: Towards a Unified View for Thinking with Images
Multimodal large language models (MLLMs) that think with images can interactively use tools to reason about visual inputs, but current approaches often rely on a narrow set of tools with limited real-world necessity and scalability. In this work, we first reveal a critical and previously overlooked weakness: even state-of-the-art MLLMs are surprisingly brittle, showing significant performance degradation on images with simple orientation changes or natural corruptions, underscoring the need for more robust tool-based reasoning. To address this, we propose CodeVision, a flexible and scalable code-as-tool framework where the model generates code as a universal interface to invoke any image operation, moving beyond fixed tool registries. We train our model using a two-stage methodology, beginning with Supervised Fine-Tuning (SFT) on a high-quality dataset curated for complex, multi-turn tool composition and error recovery, followed by Reinforcement Learning (RL) with a novel and dense process reward function to encourage strategic and efficient tool use. To facilitate this research, we construct new SFT and RL datasets and introduce a challenging new benchmark suite designed to rigorously evaluate robustness to orientation changes and multi-tool reasoning. Experiments on Qwen2.5-VL and Qwen3-VL series show that our approach significantly improves model performance and fosters emergent capabilities such as flexible tool composition, efficient chained execution, and robust error recovery from runtime feedback. Code is available at https://github.com/ByteDance-BandAI/CodeVision.
4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities
Current multimodal and multitask foundation models like 4M or UnifiedIO show promising results, but in practice their out-of-the-box abilities to accept diverse inputs and perform diverse tasks are limited by the (usually rather small) number of modalities and tasks they are trained on. In this paper, we expand upon the capabilities of them by training a single model on tens of highly diverse modalities and by performing co-training on large-scale multimodal datasets and text corpora. This includes training on several semantic and geometric modalities, feature maps from recent state of the art models like DINOv2 and ImageBind, pseudo labels of specialist models like SAM and 4DHumans, and a range of new modalities that allow for novel ways to interact with the model and steer the generation, for example image metadata or color palettes. A crucial step in this process is performing discrete tokenization on various modalities, whether they are image-like, neural network feature maps, vectors, structured data like instance segmentation or human poses, or data that can be represented as text. Through this, we expand on the out-of-the-box capabilities of multimodal models and specifically show the possibility of training one model to solve at least 3x more tasks/modalities than existing ones and doing so without a loss in performance. This enables more fine-grained and controllable multimodal generation capabilities and allows us to study the distillation of models trained on diverse data and objectives into a unified model. We successfully scale the training to a three billion parameter model using tens of modalities and different datasets. The resulting models and training code are open sourced at 4m.epfl.ch.
Unified model for code-switching speech recognition and language identification based on a concatenated tokenizer
Code-Switching (CS) multilingual Automatic Speech Recognition (ASR) models can transcribe speech containing two or more alternating languages during a conversation. This paper proposes (1) a new method for creating code-switching ASR datasets from purely monolingual data sources, and (2) a novel Concatenated Tokenizer that enables ASR models to generate language ID for each emitted text token while reusing existing monolingual tokenizers. The efficacy of these approaches for building CS ASR models is demonstrated for two language pairs, English-Hindi and English-Spanish, where we achieve new state-of-the-art results on the Miami Bangor CS evaluation corpus. In addition to competitive ASR performance, the proposed Concatenated Tokenizer models are highly effective for spoken language identification, achieving 98%+ accuracy on the out-of-distribution FLEURS dataset.
Multilingual and code-switching ASR challenges for low resource Indian languages
Recently, there is increasing interest in multilingual automatic speech recognition (ASR) where a speech recognition system caters to multiple low resource languages by taking advantage of low amounts of labeled corpora in multiple languages. With multilingualism becoming common in today's world, there has been increasing interest in code-switching ASR as well. In code-switching, multiple languages are freely interchanged within a single sentence or between sentences. The success of low-resource multilingual and code-switching ASR often depends on the variety of languages in terms of their acoustics, linguistic characteristics as well as the amount of data available and how these are carefully considered in building the ASR system. In this challenge, we would like to focus on building multilingual and code-switching ASR systems through two different subtasks related to a total of seven Indian languages, namely Hindi, Marathi, Odia, Tamil, Telugu, Gujarati and Bengali. For this purpose, we provide a total of ~600 hours of transcribed speech data, comprising train and test sets, in these languages including two code-switched language pairs, Hindi-English and Bengali-English. We also provide a baseline recipe for both the tasks with a WER of 30.73% and 32.45% on the test sets of multilingual and code-switching subtasks, respectively.
Semi-supervised Learning for Code-Switching ASR with Large Language Model Filter
Code-switching (CS) phenomenon occurs when words or phrases from different languages are alternated in a single sentence. Due to data scarcity, building an effective CS Automatic Speech Recognition (ASR) system remains challenging. In this paper, we propose to enhance CS-ASR systems by utilizing rich unsupervised monolingual speech data within a semi-supervised learning framework, particularly when access to CS data is limited. To achieve this, we establish a general paradigm for applying noisy student training (NST) to the CS-ASR task. Specifically, we introduce the LLM-Filter, which leverages well-designed prompt templates to activate the correction capability of large language models (LLMs) for monolingual data selection and pseudo-labels refinement during NST. Our experiments on the supervised ASRU-CS and unsupervised AISHELL-2 and LibriSpeech datasets show that our method not only achieves significant improvements over supervised and semi-supervised learning baselines for the CS task, but also attains better performance compared with the fully-supervised oracle upper-bound on the CS English part. Additionally, we further investigate the influence of accent on AESRC dataset and demonstrate that our method can get achieve additional benefits when the monolingual data contains relevant linguistic characteristic.
Multimodality Helps Unimodality: Cross-Modal Few-Shot Learning with Multimodal Models
The ability to quickly learn a new task with minimal instruction - known as few-shot learning - is a central aspect of intelligent agents. Classical few-shot benchmarks make use of few-shot samples from a single modality, but such samples may not be sufficient to characterize an entire concept class. In contrast, humans use cross-modal information to learn new concepts efficiently. In this work, we demonstrate that one can indeed build a better {bf visual} dog classifier by {bf read}ing about dogs and {bf listen}ing to them bark. To do so, we exploit the fact that recent multimodal foundation models such as CLIP are inherently cross-modal, mapping different modalities to the same representation space. Specifically, we propose a simple cross-modal adaptation approach that learns from few-shot examples spanning different modalities. By repurposing class names as additional one-shot training samples, we achieve SOTA results with an embarrassingly simple linear classifier for vision-language adaptation. Furthermore, we show that our approach can benefit existing methods such as prefix tuning, adapters, and classifier ensembling. Finally, to explore other modalities beyond vision and language, we construct the first (to our knowledge) audiovisual few-shot benchmark and use cross-modal training to improve the performance of both image and audio classification.
E5-V: Universal Embeddings with Multimodal Large Language Models
Multimodal large language models (MLLMs) have shown promising advancements in general visual and language understanding. However, the representation of multimodal information using MLLMs remains largely unexplored. In this work, we introduce a new framework, E5-V, designed to adapt MLLMs for achieving universal multimodal embeddings. Our findings highlight the significant potential of MLLMs in representing multimodal inputs compared to previous approaches. By leveraging MLLMs with prompts, E5-V effectively bridges the modality gap between different types of inputs, demonstrating strong performance in multimodal embeddings even without fine-tuning. We propose a single modality training approach for E5-V, where the model is trained exclusively on text pairs. This method demonstrates significant improvements over traditional multimodal training on image-text pairs, while reducing training costs by approximately 95%. Additionally, this approach eliminates the need for costly multimodal training data collection. Extensive experiments across four types of tasks demonstrate the effectiveness of E5-V. As a universal multimodal model, E5-V not only achieves but often surpasses state-of-the-art performance in each task, despite being trained on a single modality.
Language Models Can See Better: Visual Contrastive Decoding For LLM Multimodal Reasoning
Although Large Language Models (LLMs) excel in reasoning and generation for language tasks, they are not specifically designed for multimodal challenges. Training Multimodal Large Language Models (MLLMs), however, is resource-intensive and constrained by various training limitations. In this paper, we propose the Modular-based Visual Contrastive Decoding (MVCD) framework to move this obstacle. Our framework leverages LLMs' In-Context Learning (ICL) capability and the proposed visual contrastive-example decoding (CED), specifically tailored for this framework, without requiring any additional training. By converting visual signals into text and focusing on contrastive output distributions during decoding, we can highlight the new information introduced by contextual examples, explore their connections, and avoid over-reliance on prior encoded knowledge. MVCD enhances LLMs' visual perception to make it see and reason over the input visuals. To demonstrate MVCD's effectiveness, we conduct experiments with four LLMs across five question answering datasets. Our results not only show consistent improvement in model accuracy but well explain the effective components inside our decoding strategy. Our code will be available at https://github.com/Pbhgit/MVCD.
EMMeTT: Efficient Multimodal Machine Translation Training
A rising interest in the modality extension of foundation language models warrants discussion on the most effective, and efficient, multimodal training approach. This work focuses on neural machine translation (NMT) and proposes a joint multimodal training regime of Speech-LLM to include automatic speech translation (AST). We investigate two different foundation model architectures, decoder-only GPT and encoder-decoder T5, extended with Canary-1B's speech encoder. To handle joint multimodal training, we propose a novel training framework called EMMeTT. EMMeTT improves training efficiency with the following: balanced sampling across languages, datasets, and modalities; efficient sequential data iteration; and a novel 2D bucketing scheme for multimodal data, complemented by a batch size optimizer (OOMptimizer). We show that a multimodal training consistently helps with both architectures. Moreover, SALM-T5 trained with EMMeTT retains the original NMT capability while outperforming AST baselines on four-language subsets of FLORES and FLEURS. The resultant Multimodal Translation Model produces strong text and speech translation results at the same time.
Linguistics Theory Meets LLM: Code-Switched Text Generation via Equivalence Constrained Large Language Models
Code-switching, the phenomenon of alternating between two or more languages in a single conversation, presents unique challenges for Natural Language Processing (NLP). Most existing research focuses on either syntactic constraints or neural generation, with few efforts to integrate linguistic theory with large language models (LLMs) for generating natural code-switched text. In this paper, we introduce EZSwitch, a novel framework that combines Equivalence Constraint Theory (ECT) with LLMs to produce linguistically valid and fluent code-switched text. We evaluate our method using both human judgments and automatic metrics, demonstrating a significant improvement in the quality of generated code-switching sentences compared to baseline LLMs. To address the lack of suitable evaluation metrics, we conduct a comprehensive correlation study of various automatic metrics against human scores, revealing that current metrics often fail to capture the nuanced fluency of code-switched text. Additionally, we create CSPref, a human preference dataset based on human ratings and analyze model performance across ``hard`` and ``easy`` examples. Our findings indicate that incorporating linguistic constraints into LLMs leads to more robust and human-aligned generation, paving the way for scalable code-switching text generation across diverse language pairs.
Beyond Monolingual Assumptions: A Survey of Code-Switched NLP in the Era of Large Language Models
Code-switching (CSW), the alternation of languages and scripts within a single utterance, remains a fundamental challenge for multiling ual NLP, even amidst the rapid advances of large language models (LLMs). Most LLMs still struggle with mixed-language inputs, limited CSW datasets, and evaluation biases, hindering deployment in multilingual societies. This survey provides the first comprehensive analysis of CSW-aware LLM research, reviewing unique_references studies spanning five research areas, 12 NLP tasks, 30+ datasets, and 80+ languages. We classify recent advances by architecture, training strategy, and evaluation methodology, outlining how LLMs have reshaped CSW modeling and what challenges persist. The paper concludes with a roadmap emphasizing the need for inclusive datasets, fair evaluation, and linguistically grounded models to achieve truly multilingual intelligence. A curated collection of all resources is maintained at https://github.com/lingo-iitgn/awesome-code-mixing/.
Web2Code: A Large-scale Webpage-to-Code Dataset and Evaluation Framework for Multimodal LLMs
Multimodal large language models (MLLMs) have shown impressive success across modalities such as image, video, and audio in a variety of understanding and generation tasks. However, current MLLMs are surprisingly poor at understanding webpage screenshots and generating their corresponding HTML code. To address this problem, we propose Web2Code, a benchmark consisting of a new large-scale webpage-to-code dataset for instruction tuning and an evaluation framework for the webpage understanding and HTML code translation abilities of MLLMs. For dataset construction, we leverage pretrained LLMs to enhance existing webpage-to-code datasets as well as generate a diverse pool of new webpages rendered into images. Specifically, the inputs are webpage images and instructions, while the responses are the webpage's HTML code. We further include diverse natural language QA pairs about the webpage content in the responses to enable a more comprehensive understanding of the web content. To evaluate model performance in these tasks, we develop an evaluation framework for testing MLLMs' abilities in webpage understanding and web-to-code generation. Extensive experiments show that our proposed dataset is beneficial not only to our proposed tasks but also in the general visual domain, while previous datasets result in worse performance. We hope our work will contribute to the development of general MLLMs suitable for web-based content generation and task automation. Our data and code will be available at https://github.com/MBZUAI-LLM/web2code.
NExT-GPT: Any-to-Any Multimodal LLM
While recently Multimodal Large Language Models (MM-LLMs) have made exciting strides, they mostly fall prey to the limitation of only input-side multimodal understanding, without the ability to produce content in multiple modalities. As we humans always perceive the world and communicate with people through various modalities, developing any-to-any MM-LLMs capable of accepting and delivering content in any modality becomes essential to human-level AI. To fill the gap, we present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT. We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, images, videos, and audio. By leveraging the existing well-trained highly-performing encoders and decoders, NExT-GPT is tuned with only a small amount of parameter (1%) of certain projection layers, which not only benefits low-cost training and also facilitates convenient expansion to more potential modalities. Moreover, we introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation. Overall, our research showcases the promising possibility of building an AI agent capable of modeling universal modalities, paving the way for more human-like AI research in the community.
Audio-Visual LLM for Video Understanding
This paper presents Audio-Visual LLM, a Multimodal Large Language Model that takes both visual and auditory inputs for holistic video understanding. A key design is the modality-augmented training, which involves the integration of modality-specific tokens engineered to activate the appropriate visual and/or auditory encoder selectively. This mechanism is pivotal in enabling end-to-end joint training with video data at different modalities, including visual-only, audio-only, and audio-visual formats. Moreover, we introduce a high-quality video instruction dataset, derived from GPT-4. This dataset allows Audio-Visual LLM to adeptly process a variety of task-oriented video instructions, ranging from multi-turn conversations and audio-visual narratives to complex reasoning tasks. Extensive experiments demonstrate that Audio-Visual LLM impressively achieves strong zero-shot results across a range of video understanding tasks. For example, Audio-Visual LLM achieves an accuracy of 53.7% on MSRVTT-QA, outperforming non-LLM-based InterVideo by 6.6% and LLM-based Valley by 4.4%, respectively. Additionally, our Audio-Visual LLM also achieves competitive performance on audio tasks (e.g., AudioCaps).
CodeMixBench: Evaluating Code-Mixing Capabilities of LLMs Across 18 Languages
Code-mixing, the practice of switching between languages within a conversation, poses unique challenges for traditional NLP. Existing benchmarks are limited by their narrow language pairs and tasks, failing to adequately assess large language models' (LLMs) code-mixing abilities. Despite the recognized importance of code-mixing for multilingual users, research on LLMs in this context remains sparse. Additionally, current techniques for synthesizing code-mixed data are underdeveloped to generate code-mixing. In response, we introduce CodeMixBench, a comprehensive benchmark covering eight tasks, including three specific to LLMs and five traditional NLP tasks, and 18 languages across seven language families. We also propose a new method for generating large-scale synthetic code-mixed texts by combining word substitution with GPT-4 prompting. Our evaluation reveals consistent underperformance of LLMs on code-mixed datasets involving different language families. Enhancements in training data size, model scale, and few-shot learning could improve their performance. The code and dataset are available at https://github.com/Jeromeyluck/CodeMixBench.
UI2Code^N: A Visual Language Model for Test-Time Scalable Interactive UI-to-Code Generation
User interface (UI) programming is a core yet highly complex part of modern software development. Recent advances in visual language models (VLMs) highlight the potential of automatic UI coding, but current approaches face two key limitations: multimodal coding capabilities remain underdeveloped, and single-turn paradigms make little use of iterative visual feedback. We address these challenges with an interactive UI-to-code paradigm that better reflects real-world workflows and raises the upper bound of achievable performance. Under this paradigm, we present UI2Code^N, a visual language model trained through staged pretraining, fine-tuning, and reinforcement learning to achieve foundational improvements in multimodal coding. The model unifies three key capabilities: UI-to-code generation, UI editing, and UI polishing. We further explore test-time scaling for interactive generation, enabling systematic use of multi-turn feedback. Experiments on UI-to-code and UI polishing benchmarks show that UI2Code^N establishes a new state of the art among open-source models and achieves performance comparable to leading closed-source models such as Claude-4-Sonnet and GPT-5. Our code and models are available at https://github.com/zai-org/UI2Code_N.
VLM: Task-agnostic Video-Language Model Pre-training for Video Understanding
We present a simplified, task-agnostic multi-modal pre-training approach that can accept either video or text input, or both for a variety of end tasks. Existing pre-training are task-specific by adopting either a single cross-modal encoder that requires both modalities, limiting their use for retrieval-style end tasks or more complex multitask learning with two unimodal encoders, limiting early cross-modal fusion. We instead introduce new pretraining masking schemes that better mix across modalities (e.g. by forcing masks for text to predict the closest video embeddings) while also maintaining separability (e.g. unimodal predictions are sometimes required, without using all the input). Experimental results show strong performance across a wider range of tasks than any previous methods, often outperforming task-specific pre-training. Code is made available at https://github.com/pytorch/fairseq/tree/main/examples/MMPT.
Lost in the Mix: Evaluating LLM Understanding of Code-Switched Text
Code-switching (CSW) is the act of alternating between two or more languages within a single discourse. This phenomenon is widespread in multilingual communities, and increasingly prevalent in online content, where users naturally mix languages in everyday communication. As a result, Large Language Models (LLMs), now central to content processing and generation, are frequently exposed to code-switched inputs. Given their widespread use, it is crucial to understand how LLMs process and reason about such mixed-language text. This paper presents a systematic evaluation of LLM comprehension under code-switching by generating CSW variants of established reasoning and comprehension benchmarks. While degradation is evident when foreign tokens disrupt English textx2013even under linguistic constraintsx2013embedding English into other languages often improves comprehension. Though prompting yields mixed results, fine-tuning offers a more stable path to degradation mitigation.
CodeBoost: Boosting Code LLMs by Squeezing Knowledge from Code Snippets with RL
Code large language models (LLMs) have become indispensable tools for building efficient and automated coding pipelines. Existing models are typically post-trained using reinforcement learning (RL) from general-purpose LLMs using "human instruction-final answer" pairs, where the instructions are usually from manual annotations. However, collecting high-quality coding instructions is both labor-intensive and difficult to scale. On the other hand, code snippets are abundantly available from various sources. This imbalance presents a major bottleneck in instruction-based post-training. We propose CodeBoost, a post-training framework that enhances code LLMs purely from code snippets, without relying on human-annotated instructions. CodeBoost introduces the following key components: (1) maximum-clique curation, which selects a representative and diverse training corpus from code; (2) bi-directional prediction, which enables the model to learn from both forward and backward prediction objectives; (3) error-aware prediction, which incorporates learning signals from both correct and incorrect outputs; (4) heterogeneous augmentation, which diversifies the training distribution to enrich code semantics; and (5) heterogeneous rewarding, which guides model learning through multiple reward types including format correctness and execution feedback from both successes and failures. Extensive experiments across several code LLMs and benchmarks verify that CodeBoost consistently improves performance, demonstrating its effectiveness as a scalable and effective training pipeline.
MultiModal-GPT: A Vision and Language Model for Dialogue with Humans
We present a vision and language model named MultiModal-GPT to conduct multi-round dialogue with humans. MultiModal-GPT can follow various instructions from humans, such as generating a detailed caption, counting the number of interested objects, and answering general questions from users. MultiModal-GPT is parameter-efficiently fine-tuned from OpenFlamingo, with Low-rank Adapter (LoRA) added both in the cross-attention part and the self-attention part of the language model. We first construct instruction templates with vision and language data for multi-modality instruction tuning to make the model understand and follow human instructions. We find the quality of training data is vital for the dialogue performance, where few data containing short answers can lead the model to respond shortly to any instructions. To further enhance the ability to chat with humans of the MultiModal-GPT, we utilize language-only instruction-following data to train the MultiModal-GPT jointly. The joint training of language-only and visual-language instructions with the same instruction template effectively improves dialogue performance. Various demos show the ability of continuous dialogue of MultiModal-GPT with humans. Code and demo are at https://github.com/open-mmlab/Multimodal-GPT
Investigating Zero-Shot Generalizability on Mandarin-English Code-Switched ASR and Speech-to-text Translation of Recent Foundation Models with Self-Supervision and Weak Supervision
This work evaluated several cutting-edge large-scale foundation models based on self-supervision or weak supervision, including SeamlessM4T, SeamlessM4T v2, and Whisper-large-v3, on three code-switched corpora. We found that self-supervised models can achieve performances close to the supervised model, indicating the effectiveness of multilingual self-supervised pre-training. We also observed that these models still have room for improvement as they kept making similar mistakes and had unsatisfactory performances on modeling intra-sentential code-switching. In addition, the validity of several variants of Whisper was explored, and we concluded that they remained effective in a code-switching scenario, and similar techniques for self-supervised models are worth studying to boost the performance of code-switched tasks.
Model Composition for Multimodal Large Language Models
Recent developments in Multimodal Large Language Models (MLLMs) have shown rapid progress, moving towards the goal of creating versatile MLLMs that understand inputs from various modalities. However, existing methods typically rely on joint training with paired multimodal instruction data, which is resource-intensive and challenging to extend to new modalities. In this paper, we propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model. Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters. Furthermore, we introduce DAMC to address parameter interference and mismatch issues during the merging process, thereby enhancing the model performance. To facilitate research in this area, we propose MCUB, a benchmark for assessing ability of MLLMs to understand inputs from diverse modalities. Experiments on this benchmark and four other multimodal understanding tasks show significant improvements over baselines, proving that model composition can create a versatile model capable of processing inputs from multiple modalities.
Unified Multimodal Understanding via Byte-Pair Visual Encoding
Multimodal large language models (MLLMs) have made significant progress in vision-language understanding, yet effectively aligning different modalities remains a fundamental challenge. We present a framework that unifies multimodal understanding by applying byte-pair encoding to visual tokens. Unlike conventional approaches that rely on modality-specific encoders, our method directly incorporates structural information into visual tokens, mirroring successful tokenization strategies in text-only language models. We introduce a priority-guided encoding scheme that considers both frequency and spatial consistency, coupled with a multi-stage training procedure based on curriculum-driven data composition. These enhancements enable the transformer model to better capture cross-modal relationships and reason with visual information. Comprehensive experiments demonstrate improved performance across diverse vision-language tasks. By bridging the gap between visual and textual representations, our approach contributes to the advancement of more capable and efficient multimodal foundation models.
A Unified Framework for Multimodal, Multi-Part Human Motion Synthesis
The field has made significant progress in synthesizing realistic human motion driven by various modalities. Yet, the need for different methods to animate various body parts according to different control signals limits the scalability of these techniques in practical scenarios. In this paper, we introduce a cohesive and scalable approach that consolidates multimodal (text, music, speech) and multi-part (hand, torso) human motion generation. Our methodology unfolds in several steps: We begin by quantizing the motions of diverse body parts into separate codebooks tailored to their respective domains. Next, we harness the robust capabilities of pre-trained models to transcode multimodal signals into a shared latent space. We then translate these signals into discrete motion tokens by iteratively predicting subsequent tokens to form a complete sequence. Finally, we reconstruct the continuous actual motion from this tokenized sequence. Our method frames the multimodal motion generation challenge as a token prediction task, drawing from specialized codebooks based on the modality of the control signal. This approach is inherently scalable, allowing for the easy integration of new modalities. Extensive experiments demonstrated the effectiveness of our design, emphasizing its potential for broad application.
CAMEL: Cross-Attention Enhanced Mixture-of-Experts and Language Bias for Code-Switching Speech Recognition
Code-switching automatic speech recognition (ASR) aims to transcribe speech that contains two or more languages accurately. To better capture language-specific speech representations and address language confusion in code-switching ASR, the mixture-of-experts (MoE) architecture and an additional language diarization (LD) decoder are commonly employed. However, most researches remain stagnant in simple operations like weighted summation or concatenation to fuse languagespecific speech representations, leaving significant opportunities to explore the enhancement of integrating language bias information. In this paper, we introduce CAMEL, a cross-attention-based MoE and language bias approach for code-switching ASR. Specifically, after each MoE layer, we fuse language-specific speech representations with cross-attention, leveraging its strong contextual modeling abilities. Additionally, we design a source attention-based mechanism to incorporate the language information from the LD decoder output into text embeddings. Experimental results demonstrate that our approach achieves state-of-the-art performance on the SEAME, ASRU200, and ASRU700+LibriSpeech460 Mandarin-English code-switching ASR datasets.
MIO: A Foundation Model on Multimodal Tokens
In this paper, we introduce MIO, a novel foundation model built on multimodal tokens, capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner. While the emergence of large language models (LLMs) and multimodal large language models (MM-LLMs) propels advancements in artificial general intelligence through their versatile capabilities, they still lack true any-to-any understanding and generation. Recently, the release of GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex real-world tasks, enabling omnidirectional input and output across images, speech, and text. However, it is closed-source and does not support the generation of multimodal interleaved sequences. To address this gap, we present MIO, which is trained on a mixture of discrete tokens across four modalities using causal multimodal modeling. MIO undergoes a four-stage training process: (1) alignment pre-training, (2) interleaved pre-training, (3) speech-enhanced pre-training, and (4) comprehensive supervised fine-tuning on diverse textual, visual, and speech tasks. Our experimental results indicate that MIO exhibits competitive, and in some cases superior, performance compared to previous dual-modal baselines, any-to-any model baselines, and even modality-specific baselines. Moreover, MIO demonstrates advanced capabilities inherent to its any-to-any feature, such as interleaved video-text generation, chain-of-visual-thought reasoning, visual guideline generation, instructional image editing, etc.
Are Multilingual Models Effective in Code-Switching?
Multilingual language models have shown decent performance in multilingual and cross-lingual natural language understanding tasks. However, the power of these multilingual models in code-switching tasks has not been fully explored. In this paper, we study the effectiveness of multilingual language models to understand their capability and adaptability to the mixed-language setting by considering the inference speed, performance, and number of parameters to measure their practicality. We conduct experiments in three language pairs on named entity recognition and part-of-speech tagging and compare them with existing methods, such as using bilingual embeddings and multilingual meta-embeddings. Our findings suggest that pre-trained multilingual models do not necessarily guarantee high-quality representations on code-switching, while using meta-embeddings achieves similar results with significantly fewer parameters.
Multilingual Large Language Models Are Not (Yet) Code-Switchers
Multilingual Large Language Models (LLMs) have recently shown great capabilities in a wide range of tasks, exhibiting state-of-the-art performance through zero-shot or few-shot prompting methods. While there have been extensive studies on their abilities in monolingual tasks, the investigation of their potential in the context of code-switching (CSW), the practice of alternating languages within an utterance, remains relatively uncharted. In this paper, we provide a comprehensive empirical analysis of various multilingual LLMs, benchmarking their performance across four tasks: sentiment analysis, machine translation, summarization and word-level language identification. Our results indicate that despite multilingual LLMs exhibiting promising outcomes in certain tasks using zero or few-shot prompting, they still underperform in comparison to fine-tuned models of much smaller scales. We argue that current "multilingualism" in LLMs does not inherently imply proficiency with code-switching texts, calling for future research to bridge this discrepancy.
Robust Multimodal Learning via Cross-Modal Proxy Tokens
Multimodal models often experience a significant performance drop when one or more modalities are missing during inference. To address this challenge, we propose a simple yet effective approach that enhances robustness to missing modalities while maintaining strong performance when all modalities are available. Our method introduces cross-modal proxy tokens (CMPTs), which approximate the class token of a missing modality by attending only to the tokens of the available modality without requiring explicit modality generation or auxiliary networks. To efficiently learn these approximations with minimal computational overhead, we employ low-rank adapters in frozen unimodal encoders and jointly optimize an alignment loss with a task-specific loss. Extensive experiments on five multimodal datasets show that our method outperforms state-of-the-art baselines across various missing rates while achieving competitive results in complete-modality settings. Overall, our method offers a flexible and efficient solution for robust multimodal learning. The code and pretrained models will be released on GitHub.
Vision as a Dialect: Unifying Visual Understanding and Generation via Text-Aligned Representations
This paper presents a multimodal framework that attempts to unify visual understanding and generation within a shared discrete semantic representation. At its core is the Text-Aligned Tokenizer (TA-Tok), which converts images into discrete tokens using a text-aligned codebook projected from a large language model's (LLM) vocabulary. By integrating vision and text into a unified space with an expanded vocabulary, our multimodal LLM, Tar, enables cross-modal input and output through a shared interface, without the need for modality-specific designs. Additionally, we propose scale-adaptive encoding and decoding to balance efficiency and visual detail, along with a generative de-tokenizer to produce high-fidelity visual outputs. To address diverse decoding needs, we utilize two complementary de-tokenizers: a fast autoregressive model and a diffusion-based model. To enhance modality fusion, we investigate advanced pre-training tasks, demonstrating improvements in both visual understanding and generation. Experiments across benchmarks show that Tar matches or surpasses existing multimodal LLM methods, achieving faster convergence and greater training efficiency. Code, models, and data are available at https://tar.csuhan.com
Analyzing Fine-tuning Representation Shift for Multimodal LLMs Steering alignment
Multimodal LLMs have reached remarkable levels of proficiency in understanding multimodal inputs, driving extensive research to develop increasingly powerful models. However, much less attention has been paid to understanding and explaining the underlying mechanisms of these models. Most existing explainability research examines these models only in their final states, overlooking the dynamic representational shifts that occur during training. In this work, we systematically analyze the evolution of hidden state representations to reveal how fine-tuning alters the internal structure of a model to specialize in new multimodal tasks. Using a concept-based approach, we map hidden states to interpretable visual and textual concepts, enabling us to trace changes in encoded concepts across modalities as training progresses. We also demonstrate the use of shift vectors to capture these concepts changes. These shift vectors allow us to recover fine-tuned concepts by shifting those in the original model. Finally, we explore the practical impact of our findings on model steering, showing that we can adjust multimodal LLMs behaviors without any training, such as modifying answer types, captions style, or biasing the model toward specific responses. Our work sheds light on how multimodal representations evolve through fine-tuning and offers a new perspective for interpreting model adaptation in multimodal tasks. The code for this project is publicly available at https://github.com/mshukor/xl-vlms.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation
Pre-trained models for programming languages have recently demonstrated great success on code intelligence. To support both code-related understanding and generation tasks, recent works attempt to pre-train unified encoder-decoder models. However, such encoder-decoder framework is sub-optimal for auto-regressive tasks, especially code completion that requires a decoder-only manner for efficient inference. In this paper, we present UniXcoder, a unified cross-modal pre-trained model for programming language. The model utilizes mask attention matrices with prefix adapters to control the behavior of the model and leverages cross-modal contents like AST and code comment to enhance code representation. To encode AST that is represented as a tree in parallel, we propose a one-to-one mapping method to transform AST in a sequence structure that retains all structural information from the tree. Furthermore, we propose to utilize multi-modal contents to learn representation of code fragment with contrastive learning, and then align representations among programming languages using a cross-modal generation task. We evaluate UniXcoder on five code-related tasks over nine datasets. To further evaluate the performance of code fragment representation, we also construct a dataset for a new task, called zero-shot code-to-code search. Results show that our model achieves state-of-the-art performance on most tasks and analysis reveals that comment and AST can both enhance UniXcoder.
JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence
The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.
Revealing Vision-Language Integration in the Brain with Multimodal Networks
We use (multi)modal deep neural networks (DNNs) to probe for sites of multimodal integration in the human brain by predicting stereoencephalography (SEEG) recordings taken while human subjects watched movies. We operationalize sites of multimodal integration as regions where a multimodal vision-language model predicts recordings better than unimodal language, unimodal vision, or linearly-integrated language-vision models. Our target DNN models span different architectures (e.g., convolutional networks and transformers) and multimodal training techniques (e.g., cross-attention and contrastive learning). As a key enabling step, we first demonstrate that trained vision and language models systematically outperform their randomly initialized counterparts in their ability to predict SEEG signals. We then compare unimodal and multimodal models against one another. Because our target DNN models often have different architectures, number of parameters, and training sets (possibly obscuring those differences attributable to integration), we carry out a controlled comparison of two models (SLIP and SimCLR), which keep all of these attributes the same aside from input modality. Using this approach, we identify a sizable number of neural sites (on average 141 out of 1090 total sites or 12.94%) and brain regions where multimodal integration seems to occur. Additionally, we find that among the variants of multimodal training techniques we assess, CLIP-style training is the best suited for downstream prediction of the neural activity in these sites.
One Model, Many Languages: Meta-learning for Multilingual Text-to-Speech
We introduce an approach to multilingual speech synthesis which uses the meta-learning concept of contextual parameter generation and produces natural-sounding multilingual speech using more languages and less training data than previous approaches. Our model is based on Tacotron 2 with a fully convolutional input text encoder whose weights are predicted by a separate parameter generator network. To boost voice cloning, the model uses an adversarial speaker classifier with a gradient reversal layer that removes speaker-specific information from the encoder. We arranged two experiments to compare our model with baselines using various levels of cross-lingual parameter sharing, in order to evaluate: (1) stability and performance when training on low amounts of data, (2) pronunciation accuracy and voice quality of code-switching synthesis. For training, we used the CSS10 dataset and our new small dataset based on Common Voice recordings in five languages. Our model is shown to effectively share information across languages and according to a subjective evaluation test, it produces more natural and accurate code-switching speech than the baselines.
Some Modalities are More Equal Than Others: Decoding and Architecting Multimodal Integration in MLLMs
Despite remarkable advancements in Multimodal Large Language Models (MLLMs), a fundamental question remains: are MLLMs robust to contradicting modalities? To rigorously study this, we introduce MMA-Bench comprising videos and tasks that probe a model's reliance on specific modalities. Using black-box and white-box interpretability techniques, we provide a critical analysis of the brittleness of both open- and closed-sourced MLLMs. We show that current MLLMs struggle under misaligned audio-visual pairs and simple misleading text, thereby lacking robust multi-modal reasoning. Building on these findings, we propose a modality alignment tuning strategy to teach the model when to prioritize, leverage, or ignore specific modality cues. Through extensive experiments and analysis, we show that our alignment tuning yields demonstrably stronger multimodal grounding. This work provides both interpretability tools and a clear path toward developing MLLMs with intrinsically reliable cross-modal reasoning. Code and dataset will be publicly available.
ModRWKV: Transformer Multimodality in Linear Time
Currently, most multimodal studies are based on large language models (LLMs) with quadratic-complexity Transformer architectures. While linear models like RNNs enjoy low inference costs, their application has been largely limited to the text-only modality. This work explores the capabilities of modern RNN architectures in multimodal contexts. We propose ModRWKV-a decoupled multimodal framework built upon the RWKV7 architecture as its LLM backbone-which achieves multi-source information fusion through dynamically adaptable heterogeneous modality encoders. We designed the multimodal modules in ModRWKV with an extremely lightweight architecture and, through extensive experiments, identified a configuration that achieves an optimal balance between performance and computational efficiency. ModRWKV leverages the pretrained weights of the RWKV7 LLM for initialization, which significantly accelerates multimodal training. Comparative experiments with different pretrained checkpoints further demonstrate that such initialization plays a crucial role in enhancing the model's ability to understand multimodal signals. Supported by extensive experiments, we conclude that modern RNN architectures present a viable alternative to Transformers in the domain of multimodal large language models (MLLMs). Furthermore, we identify the optimal configuration of the ModRWKV architecture through systematic exploration.
CST5: Data Augmentation for Code-Switched Semantic Parsing
Extending semantic parsers to code-switched input has been a challenging problem, primarily due to a lack of supervised training data. In this work, we introduce CST5, a new data augmentation technique that finetunes a T5 model using a small seed set (approx100 utterances) to generate code-switched utterances from English utterances. We show that CST5 generates high quality code-switched data, both intrinsically (per human evaluation) and extrinsically by comparing baseline models which are trained without data augmentation to models which are trained with augmented data. Empirically we observe that using CST5, one can achieve the same semantic parsing performance by using up to 20x less labeled data. To aid further research in this area, we are also releasing (a) Hinglish-TOP, the largest human annotated code-switched semantic parsing dataset to date, containing 10k human annotated Hindi-English (Hinglish) code-switched utterances, and (b) Over 170K CST5 generated code-switched utterances from the TOPv2 dataset. Human evaluation shows that both the human annotated data as well as the CST5 generated data is of good quality.
Diagnosing and Mitigating Modality Interference in Multimodal Large Language Models
Multimodal Large Language Models have demonstrated impressive capabilities across tasks, yet they often exhibit difficulty in distinguishing task-relevant from irrelevant signals -- particularly in tasks like Visual Question Answering -- which can lead to susceptibility to misleading or spurious inputs. We refer to this broader limitation as the Cross-Modality Competency Problem -- the model's inability to fairly evaluate all modalities. This vulnerability becomes more evident in modality-specific tasks -- such as image classification or pure text question answering -- where models are expected to rely solely on one modality. In such tasks, spurious information from irrelevant modalities often leads to significant performance degradation. We refer to this failure as Modality Interference, which serves as a concrete and measurable instance of the cross-modality competency problem, and we further design a perturbation-based causal diagnostic experiment to verify and quantify this problem. To mitigate modality interference, we propose a novel framework to finetune MLLMs, including perturbation-based data augmentations with both heuristic perturbations and adversarial perturbations, and a consistency regularization strategy applying on model outputs with original and perturbed inputs. Experiments on multiple benchmark datasets (image-heavy, text-heavy and multimodal tasks) and multiple model families with different scales demonstrate significant improvements in robustness and cross-modality competency, indicating our method's effectiveness in boosting unimodal reasoning ability while enhancing performance on multimodal tasks.
CoDi-2: In-Context, Interleaved, and Interactive Any-to-Any Generation
We present CoDi-2, a versatile and interactive Multimodal Large Language Model (MLLM) that can follow complex multimodal interleaved instructions, conduct in-context learning (ICL), reason, chat, edit, etc., in an any-to-any input-output modality paradigm. By aligning modalities with language for both encoding and generation, CoDi-2 empowers Large Language Models (LLMs) to not only understand complex modality-interleaved instructions and in-context examples, but also autoregressively generate grounded and coherent multimodal outputs in the continuous feature space. To train CoDi-2, we build a large-scale generation dataset encompassing in-context multimodal instructions across text, vision, and audio. CoDi-2 demonstrates a wide range of zero-shot capabilities for multimodal generation, such as in-context learning, reasoning, and compositionality of any-to-any modality generation through multi-round interactive conversation. CoDi-2 surpasses previous domain-specific models on tasks such as subject-driven image generation, vision transformation, and audio editing. CoDi-2 signifies a substantial breakthrough in developing a comprehensive multimodal foundation model adept at interpreting in-context language-vision-audio interleaved instructions and producing multimodal outputs.
Looking to Learn: Token-wise Dynamic Gating for Low-Resource Vision-Language Modelling
Training vision-language models on cognitively-plausible amounts of data requires rethinking how models integrate multimodal information. Within the constraints of the Vision track for the BabyLM Challenge 2025, we propose a lightweight decoder-based architecture with (1) token-wise dynamic gating for adaptive fusion of linguistic and visual cues, (2) feature modulation and channel attention to maximise the utility of limited visual information and (3) auxiliary contrastive objectives for visual grounding. Evaluation on five benchmarks (BLiMP, BLiMP Supplement, EWoK, Winoground and VQA) shows competitive or superior performance to multimodal baselines. More notably, our dynamic gate discovers interpretable patterns without explicit supervision, favouring visual cues for content words and linguistic cues for function words. While we identify limitations in the Challenge constraints, such as the information bottleneck created by global image embeddings and training instability from the dataset split, our findings establish dynamic gating as a powerful tool for efficient multimodal learning, offering both interpretability and performance even under severe constraints.
Deep Equilibrium Multimodal Fusion
Multimodal fusion integrates the complementary information present in multiple modalities and has gained much attention recently. Most existing fusion approaches either learn a fixed fusion strategy during training and inference, or are only capable of fusing the information to a certain extent. Such solutions may fail to fully capture the dynamics of interactions across modalities especially when there are complex intra- and inter-modality correlations to be considered for informative multimodal fusion. In this paper, we propose a novel deep equilibrium (DEQ) method towards multimodal fusion via seeking a fixed point of the dynamic multimodal fusion process and modeling the feature correlations in an adaptive and recursive manner. This new way encodes the rich information within and across modalities thoroughly from low level to high level for efficacious downstream multimodal learning and is readily pluggable to various multimodal frameworks. Extensive experiments on BRCA, MM-IMDB, CMU-MOSI, SUN RGB-D, and VQA-v2 demonstrate the superiority of our DEQ fusion. More remarkably, DEQ fusion consistently achieves state-of-the-art performance on multiple multimodal benchmarks. The code will be released.
Tell me Habibi, is it Real or Fake?
Deepfake generation methods are evolving fast, making fake media harder to detect and raising serious societal concerns. Most deepfake detection and dataset creation research focuses on monolingual content, often overlooking the challenges of multilingual and code-switched speech, where multiple languages are mixed within the same discourse. Code-switching, especially between Arabic and English, is common in the Arab world and is widely used in digital communication. This linguistic mixing poses extra challenges for deepfake detection, as it can confuse models trained mostly on monolingual data. To address this, we introduce ArEnAV, the first large-scale Arabic-English audio-visual deepfake dataset featuring intra-utterance code-switching, dialectal variation, and monolingual Arabic content. It contains 387k videos and over 765 hours of real and fake videos. Our dataset is generated using a novel pipeline integrating four Text-To-Speech and two lip-sync models, enabling comprehensive analysis of multilingual multimodal deepfake detection. We benchmark our dataset against existing monolingual and multilingual datasets, state-of-the-art deepfake detection models, and a human evaluation, highlighting its potential to advance deepfake research. The dataset can be accessed https://huggingface.co/datasets/kartik060702/ArEnAV-Full{here}.
Multimodal Few-Shot Learning with Frozen Language Models
When trained at sufficient scale, auto-regressive language models exhibit the notable ability to learn a new language task after being prompted with just a few examples. Here, we present a simple, yet effective, approach for transferring this few-shot learning ability to a multimodal setting (vision and language). Using aligned image and caption data, we train a vision encoder to represent each image as a sequence of continuous embeddings, such that a pre-trained, frozen language model prompted with this prefix generates the appropriate caption. The resulting system is a multimodal few-shot learner, with the surprising ability to learn a variety of new tasks when conditioned on examples, represented as a sequence of multiple interleaved image and text embeddings. We demonstrate that it can rapidly learn words for new objects and novel visual categories, do visual question-answering with only a handful of examples, and make use of outside knowledge, by measuring a single model on a variety of established and new benchmarks.
Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts
Recent advancements in Multimodal Large Language Models (MLLMs) underscore the significance of scalable models and data to boost performance, yet this often incurs substantial computational costs. Although the Mixture of Experts (MoE) architecture has been employed to efficiently scale large language and image-text models, these efforts typically involve fewer experts and limited modalities. To address this, our work presents the pioneering attempt to develop a unified MLLM with the MoE architecture, named Uni-MoE that can handle a wide array of modalities. Specifically, it features modality-specific encoders with connectors for a unified multimodal representation. We also implement a sparse MoE architecture within the LLMs to enable efficient training and inference through modality-level data parallelism and expert-level model parallelism. To enhance the multi-expert collaboration and generalization, we present a progressive training strategy: 1) Cross-modality alignment using various connectors with different cross-modality data, 2) Training modality-specific experts with cross-modality instruction data to activate experts' preferences, and 3) Tuning the Uni-MoE framework utilizing Low-Rank Adaptation (LoRA) on mixed multimodal instruction data. We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets. The extensive experimental results demonstrate Uni-MoE's principal advantage of significantly reducing performance bias in handling mixed multimodal datasets, alongside improved multi-expert collaboration and generalization. Our findings highlight the substantial potential of MoE frameworks in advancing MLLMs and the code is available at https://github.com/HITsz-TMG/UMOE-Scaling-Unified-Multimodal-LLMs.
Improving Neural Machine Translation by Bidirectional Training
We present a simple and effective pretraining strategy -- bidirectional training (BiT) for neural machine translation. Specifically, we bidirectionally update the model parameters at the early stage and then tune the model normally. To achieve bidirectional updating, we simply reconstruct the training samples from "srcrightarrowtgt" to "src+tgtrightarrowtgt+src" without any complicated model modifications. Notably, our approach does not increase any parameters or training steps, requiring the parallel data merely. Experimental results show that BiT pushes the SOTA neural machine translation performance across 15 translation tasks on 8 language pairs (data sizes range from 160K to 38M) significantly higher. Encouragingly, our proposed model can complement existing data manipulation strategies, i.e. back translation, data distillation, and data diversification. Extensive analyses show that our approach functions as a novel bilingual code-switcher, obtaining better bilingual alignment.
MultiQT: Multimodal Learning for Real-Time Question Tracking in Speech
We address a challenging and practical task of labeling questions in speech in real time during telephone calls to emergency medical services in English, which embeds within a broader decision support system for emergency call-takers. We propose a novel multimodal approach to real-time sequence labeling in speech. Our model treats speech and its own textual representation as two separate modalities or views, as it jointly learns from streamed audio and its noisy transcription into text via automatic speech recognition. Our results show significant gains of jointly learning from the two modalities when compared to text or audio only, under adverse noise and limited volume of training data. The results generalize to medical symptoms detection where we observe a similar pattern of improvements with multimodal learning.
Classifier-guided Gradient Modulation for Enhanced Multimodal Learning
Multimodal learning has developed very fast in recent years. However, during the multimodal training process, the model tends to rely on only one modality based on which it could learn faster, thus leading to inadequate use of other modalities. Existing methods to balance the training process always have some limitations on the loss functions, optimizers and the number of modalities and only consider modulating the magnitude of the gradients while ignoring the directions of the gradients. To solve these problems, in this paper, we present a novel method to balance multimodal learning with Classifier-Guided Gradient Modulation (CGGM), considering both the magnitude and directions of the gradients. We conduct extensive experiments on four multimodal datasets: UPMC-Food 101, CMU-MOSI, IEMOCAP and BraTS 2021, covering classification, regression and segmentation tasks. The results show that CGGM outperforms all the baselines and other state-of-the-art methods consistently, demonstrating its effectiveness and versatility. Our code is available at https://github.com/zrguo/CGGM.
Dual Modalities of Text: Visual and Textual Generative Pre-training
Harnessing visual texts represents a burgeoning frontier in the evolution of language modeling. In this paper, we introduce a novel pre-training framework for a suite of pixel-based autoregressive language models, pre-training on a corpus of over 400 million documents rendered as RGB images. Our approach is characterized by a dual-modality training regimen, engaging both visual data through next patch prediction with a regression head and textual data via next token prediction with a classification head. This study is particularly focused on investigating the synergistic interplay between visual and textual modalities of language. Our comprehensive evaluation across a diverse array of benchmarks reveals that the confluence of visual and textual data substantially augments the efficacy of pixel-based language models. Notably, our findings show that a unidirectional pixel-based model, devoid of textual data during training, can match the performance levels of advanced bidirectional pixel-based models on various language understanding benchmarks. This work highlights the considerable untapped potential of integrating visual and textual information for language modeling purposes. We will release our code, data, and checkpoints to inspire further research advancement.
mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data
Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space. However, the limited labeled multimodal data often hinders embedding performance. Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck. In this work, we identify three criteria for high-quality synthetic multimodal data. First, broad scope ensures that the generated data covers diverse tasks and modalities, making it applicable to various downstream scenarios. Second, robust cross-modal alignment makes different modalities semantically consistent. Third, high fidelity ensures that the synthetic data maintains realistic details to enhance its reliability. Guided by these principles, we synthesize datasets that: (1) cover a wide range of tasks, modality combinations, and languages, (2) are generated via a deep thinking process within a single pass of a multimodal large language model, and (3) incorporate real-world images with accurate and relevant texts, ensuring fidelity through self-evaluation and refinement. Leveraging these high-quality synthetic and labeled datasets, we train a multimodal multilingual E5 model mmE5. Extensive experiments demonstrate that mmE5 achieves state-of-the-art performance on the MMEB Benchmark and superior multilingual performance on the XTD benchmark. Our codes, datasets and models are released in https://github.com/haon-chen/mmE5.
MultiMAE: Multi-modal Multi-task Masked Autoencoders
We propose a pre-training strategy called Multi-modal Multi-task Masked Autoencoders (MultiMAE). It differs from standard Masked Autoencoding in two key aspects: I) it can optionally accept additional modalities of information in the input besides the RGB image (hence "multi-modal"), and II) its training objective accordingly includes predicting multiple outputs besides the RGB image (hence "multi-task"). We make use of masking (across image patches and input modalities) to make training MultiMAE tractable as well as to ensure cross-modality predictive coding is indeed learned by the network. We show this pre-training strategy leads to a flexible, simple, and efficient framework with improved transfer results to downstream tasks. In particular, the same exact pre-trained network can be flexibly used when additional information besides RGB images is available or when no information other than RGB is available - in all configurations yielding competitive to or significantly better results than the baselines. To avoid needing training datasets with multiple modalities and tasks, we train MultiMAE entirely using pseudo labeling, which makes the framework widely applicable to any RGB dataset. The experiments are performed on multiple transfer tasks (image classification, semantic segmentation, depth estimation) and datasets (ImageNet, ADE20K, Taskonomy, Hypersim, NYUv2). The results show an intriguingly impressive capability by the model in cross-modal/task predictive coding and transfer.
CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models
Large Multi-modal Models (LMMs) have recently demonstrated remarkable abilities in visual context understanding and coherent response generation. However, alongside these advancements, the issue of hallucinations has emerged as a significant challenge, producing erroneous responses that are unrelated to the visual contents. In this paper, we introduce a novel contrastive-based decoding method, COuntering DEscription Contrastive Decoding (CODE), which leverages self-generated descriptions as contrasting references during the decoding phase of LMMs to address hallucination issues. CODE utilizes the comprehensive descriptions from model itself as visual counterpart to correct and improve response alignment with actual visual content. By dynamically adjusting the information flow and distribution of next-token predictions in the LMM's vocabulary, CODE enhances the coherence and informativeness of generated responses. Extensive experiments demonstrate that our method significantly reduces hallucinations and improves cross-modal consistency across various benchmarks and cutting-edge LMMs. Our method provides a simple yet effective decoding strategy that can be integrated to existing LMM frameworks without additional training.
True Multimodal In-Context Learning Needs Attention to the Visual Context
Multimodal Large Language Models (MLLMs), built on powerful language backbones, have enabled Multimodal In-Context Learning (MICL)-adapting to new tasks from a few multimodal demonstrations consisting of images, questions, and answers. Despite showing noticeable improvement on standard vision-language datasets, current MLLMs struggle to leverage visual information in the demonstrations. Specifically, they tend to neglect visual cues and over-rely on textual patterns, leading to mere text imitation rather than genuine multimodal adaptation. This behavior makes MICL still unimodal and largely restricts its practical utility. More importantly, this limitation is often concealed by the improved performance on tasks that do not require understanding the visual context. As a result, how to effectively enhance MICL ability and reliably evaluate the MICL performance remains underexplored. To address these issues, we first introduce Dynamic Attention Reallocation (DARA), an efficient fine-tuning strategy that encourages models to attend to the visual context by rebalancing attention across visual and textual tokens. In addition, we present TrueMICL, an MICL-dedicated dataset with both support and test sets that explicitly requires the integration of multimodal information-particularly visual content-for correct task completion. Extensive experiments demonstrate the effectiveness of our holistic solution, showcasing substantial improvements in the true multimodal in-context learning capabilities. Code and datasets are available at https://chenxshuo.github.io/true-micl-colm .
Better Together: Leveraging Unpaired Multimodal Data for Stronger Unimodal Models
Traditional multimodal learners find unified representations for tasks like visual question answering, but rely heavily on paired datasets. However, an overlooked yet potentially powerful question is: can one leverage auxiliary unpaired multimodal data to directly enhance representation learning in a target modality? We introduce UML: Unpaired Multimodal Learner, a modality-agnostic training paradigm in which a single model alternately processes inputs from different modalities while sharing parameters across them. This design exploits the assumption that different modalities are projections of a shared underlying reality, allowing the model to benefit from cross-modal structure without requiring explicit pairs. Theoretically, under linear data-generating assumptions, we show that unpaired auxiliary data can yield representations strictly more informative about the data-generating process than unimodal training. Empirically, we show that using unpaired data from auxiliary modalities -- such as text, audio, or images -- consistently improves downstream performance across diverse unimodal targets such as image and audio. Our project page: https://unpaired-multimodal.github.io/
ArzEn-LLM: Code-Switched Egyptian Arabic-English Translation and Speech Recognition Using LLMs
Motivated by the widespread increase in the phenomenon of code-switching between Egyptian Arabic and English in recent times, this paper explores the intricacies of machine translation (MT) and automatic speech recognition (ASR) systems, focusing on translating code-switched Egyptian Arabic-English to either English or Egyptian Arabic. Our goal is to present the methodologies employed in developing these systems, utilizing large language models such as LLama and Gemma. In the field of ASR, we explore the utilization of the Whisper model for code-switched Egyptian Arabic recognition, detailing our experimental procedures including data preprocessing and training techniques. Through the implementation of a consecutive speech-to-text translation system that integrates ASR with MT, we aim to overcome challenges posed by limited resources and the unique characteristics of the Egyptian Arabic dialect. Evaluation against established metrics showcases promising results, with our methodologies yielding a significant improvement of 56% in English translation over the state-of-the-art and 9.3% in Arabic translation. Since code-switching is deeply inherent in spoken languages, it is crucial that ASR systems can effectively handle this phenomenon. This capability is crucial for enabling seamless interaction in various domains, including business negotiations, cultural exchanges, and academic discourse. Our models and code are available as open-source resources. Code: http://github.com/ahmedheakl/arazn-llm}, Models: http://huggingface.co/collections/ahmedheakl/arazn-llm-662ceaf12777656607b9524e.
InteractiveOmni: A Unified Omni-modal Model for Audio-Visual Multi-turn Dialogue
We introduce InteractiveOmni, a unified and open-source omni-modal large language model for audio-visual multi-turn interaction, ranging from 4B to 8B parameters, designed to lead the field of lightweight models by offering comprehensive omni-modal understanding and speech generation capabilities. To achieve this, we integrate the vision encoder, audio encoder, large language model, and speech decoder into a unified model for understanding and generation tasks. We design a multi-stage training strategy to ensure robust cross-modal capabilities, including pre-training for omni-modal understanding, followed by post-training with speech conversation and audio-visual interaction. To enable human-like long-term conversational ability, we meticulously curate a multi-turn training dataset that enhances the model's ability to handle complex and multi-turn interactions. To effectively evaluate the multi-turn memory and speech interaction capabilities, we construct the multi-modal multi-turn memory benchmark and the multi-turn speech interaction benchmark. Experiments demonstrate that InteractiveOmni significantly outperforms leading open-source models and provides a more intelligent multi-turn audio-visual experience, particularly in its long-term memory capabilities. Notably, InteractiveOmni-4B is comparable to the much larger model like Qwen2.5-Omni-7B on general benchmarks, and it can retain 97% of the performance of the InteractiveOmni-8B while utilizing only 50% of the model size. Achieving state-of-the-art results against similarly sized models across image, audio, video understanding, and speech generation tasks, InteractiveOmni is an accessible, open-source foundation for next-generation intelligent interactive systems.
CodeBERT: A Pre-Trained Model for Programming and Natural Languages
We present CodeBERT, a bimodal pre-trained model for programming language (PL) and nat-ural language (NL). CodeBERT learns general-purpose representations that support downstream NL-PL applications such as natural language codesearch, code documentation generation, etc. We develop CodeBERT with Transformer-based neural architecture, and train it with a hybrid objective function that incorporates the pre-training task of replaced token detection, which is to detect plausible alternatives sampled from generators. This enables us to utilize both bimodal data of NL-PL pairs and unimodal data, where the former provides input tokens for model training while the latter helps to learn better generators. We evaluate CodeBERT on two NL-PL applications by fine-tuning model parameters. Results show that CodeBERT achieves state-of-the-art performance on both natural language code search and code documentation generation tasks. Furthermore, to investigate what type of knowledge is learned in CodeBERT, we construct a dataset for NL-PL probing, and evaluate in a zero-shot setting where parameters of pre-trained models are fixed. Results show that CodeBERT performs better than previous pre-trained models on NL-PL probing.
Explore the Limits of Omni-modal Pretraining at Scale
We propose to build omni-modal intelligence, which is capable of understanding any modality and learning universal representations. In specific, we propose a scalable pretraining paradigm, named Multimodal Context (MiCo), which can scale up the numbers of modalities and amount of data, together with the model parameters, in the pretraining process. With MiCo, the pretrained models show significant emergent abilities in multimodal learning, which are evaluated on the following tasks: i) single-modality perception benchmarks of 10 different modalities, ii) 25 cross-modality understanding tasks of retrieval, question-answering, captioning, and iii) 18 multimodal large language model benchmarks. Our models establish 37 new records for state-of-the-art performance. We hope that our research could contribute to the development of omni-modal intelligence. Code and Models are at https://github.com/invictus717/MiCo
CoCoSoDa: Effective Contrastive Learning for Code Search
Code search aims to retrieve semantically relevant code snippets for a given natural language query. Recently, many approaches employing contrastive learning have shown promising results on code representation learning and greatly improved the performance of code search. However, there is still a lot of room for improvement in using contrastive learning for code search. In this paper, we propose CoCoSoDa to effectively utilize contrastive learning for code search via two key factors in contrastive learning: data augmentation and negative samples. Specifically, soft data augmentation is to dynamically masking or replacing some tokens with their types for input sequences to generate positive samples. Momentum mechanism is used to generate large and consistent representations of negative samples in a mini-batch through maintaining a queue and a momentum encoder. In addition, multimodal contrastive learning is used to pull together representations of code-query pairs and push apart the unpaired code snippets and queries. We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages. Experimental results show that: (1) CoCoSoDa outperforms 14 baselines and especially exceeds CodeBERT, GraphCodeBERT, and UniXcoder by 13.3%, 10.5%, and 5.9% on average MRR scores, respectively. (2) The ablation studies show the effectiveness of each component of our approach. (3) We adapt our techniques to several different pre-trained models such as RoBERTa, CodeBERT, and GraphCodeBERT and observe a significant boost in their performance in code search. (4) Our model performs robustly under different hyper-parameters. Furthermore, we perform qualitative and quantitative analyses to explore reasons behind the good performance of our model.
AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities
In this work, we present a conceptually simple and effective method to train a strong bilingual/multilingual multimodal representation model. Starting from the pre-trained multimodal representation model CLIP released by OpenAI, we altered its text encoder with a pre-trained multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art performances on a bunch of tasks including ImageNet-CN, Flicker30k-CN, COCO-CN and XTD. Further, we obtain very close performances with CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding. Our models and code are available at https://github.com/FlagAI-Open/FlagAI.
eP-ALM: Efficient Perceptual Augmentation of Language Models
Large Language Models (LLMs) have so far impressed the world, with unprecedented capabilities that emerge in models at large scales. On the vision side, transformer models (i.e., ViT) are following the same trend, achieving the best performance on challenging benchmarks. With the abundance of such unimodal models, a natural question arises; do we need also to follow this trend to tackle multimodal tasks? In this work, we propose to rather direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception. Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency. In particular, they still train a large number of parameters, rely on large multimodal pretraining, use encoders (e.g., CLIP) trained on huge image-text datasets, and add significant inference overhead. In addition, most of these approaches have focused on Zero-Shot and In Context Learning, with little to no effort on direct finetuning. We investigate the minimal computational effort needed to adapt unimodal models for multimodal tasks and propose a new challenging setup, alongside different approaches, that efficiently adapts unimodal pretrained models. We show that by freezing more than 99\% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning across Image, Video, and Audio modalities, following the proposed setup. The code will be available here: https://github.com/mshukor/eP-ALM.
UniCode^2: Cascaded Large-scale Codebooks for Unified Multimodal Understanding and Generation
Unified multimodal large language models (MLLMs) have shown promise in jointly advancing multimodal understanding and generation, with visual codebooks discretizing images into tokens for autoregressive modeling. Existing codebook-based methods either rely on small vocabularies (~16K entries) that lack fine-grained semantics or naively scale up, resulting in low token utilization and unstable training. We propose UniCode^2, a cascaded codebook framework enabling large-scale, semantically aligned, and stable visual tokenization. By clustering millions of SigLIP sequence embeddings, we build a 500K-entry codebook that preserves vision-language alignment while expanding capacity. Stability is ensured via a cascaded design: a frozen codebook anchors the embedding space, and a trainable codebook refines task-specific semantics. This decoupling promotes high utilization and robust learning. Moreover, the alignment of our visual tokens with textual semantics enables seamless integration with pretrained diffusion decoders, supporting high-quality visual synthesis with minimal adaptation. UniCode^2 delivers strong performance across diverse benchmarks, demonstrating the viability of scaling visual token spaces without sacrificing stability, semantics, or modularity.
Survey of Large Multimodal Model Datasets, Application Categories and Taxonomy
Multimodal learning, a rapidly evolving field in artificial intelligence, seeks to construct more versatile and robust systems by integrating and analyzing diverse types of data, including text, images, audio, and video. Inspired by the human ability to assimilate information through many senses, this method enables applications such as text-to-video conversion, visual question answering, and image captioning. Recent developments in datasets that support multimodal language models (MLLMs) are highlighted in this overview. Large-scale multimodal datasets are essential because they allow for thorough testing and training of these models. With an emphasis on their contributions to the discipline, the study examines a variety of datasets, including those for training, domain-specific tasks, and real-world applications. It also emphasizes how crucial benchmark datasets are for assessing models' performance in a range of scenarios, scalability, and applicability. Since multimodal learning is always changing, overcoming these obstacles will help AI research and applications reach new heights.
Mini-Omni2: Towards Open-source GPT-4o with Vision, Speech and Duplex Capabilities
GPT-4o, an all-encompassing model, represents a milestone in the development of large multi-modal language models. It can understand visual, auditory, and textual modalities, directly output audio, and support flexible duplex interaction. Models from the open-source community often achieve some functionalities of GPT-4o, such as visual understanding and voice chat. Nevertheless, training a unified model that incorporates all modalities is challenging due to the complexities of multi-modal data, intricate model architectures, and training processes. In this paper, we introduce Mini-Omni2, a visual-audio assistant capable of providing real-time, end-to-end voice responses to visoin and audio queries. By integrating pretrained visual and auditory encoders, Mini-Omni2 maintains performance in individual modalities. We propose a three-stage training process to align modalities, allowing the language model to handle multi-modal inputs and outputs after training on a limited dataset. For interaction, we introduce a command-based interruption mechanism, enabling more flexible interaction with users. To the best of our knowledge, Mini-Omni2 is one of the closest reproductions of GPT-4o, which have similar form of functionality, and we hope it can offer valuable insights for subsequent research.
Code Representation Learning At Scale
Recent studies have shown that code language models at scale demonstrate significant performance gains on downstream tasks, i.e., code generation. However, most of the existing works on code representation learning train models at a hundred million parameter scale using very limited pretraining corpora. In this work, we fuel code representation learning with a vast amount of code data via a two-stage pretraining scheme. We first train the encoders via a mix that leverages both randomness in masking language modeling and the structure aspect of programming language. We then enhance the representations via contrastive learning with hard negative and hard positive constructed in an unsupervised manner. We establish an off-the-shelf encoder model that persistently outperforms the existing models on a wide variety of downstream tasks by large margins. To comprehend the factors contributing to successful code representation learning, we conduct detailed ablations and share our findings on (i) a customized and effective token-level denoising scheme for source code; (ii) the importance of hard negatives and hard positives; (iii) how the proposed bimodal contrastive learning boost the cross-lingual semantic search performance; and (iv) how the pretraining schemes decide the downstream task performance scales with the model size.
EntityCS: Improving Zero-Shot Cross-lingual Transfer with Entity-Centric Code Switching
Accurate alignment between languages is fundamental for improving cross-lingual pre-trained language models (XLMs). Motivated by the natural phenomenon of code-switching (CS) in multilingual speakers, CS has been used as an effective data augmentation method that offers language alignment at the word- or phrase-level, in contrast to sentence-level via parallel instances. Existing approaches either use dictionaries or parallel sentences with word alignment to generate CS data by randomly switching words in a sentence. However, such methods can be suboptimal as dictionaries disregard semantics, and syntax might become invalid after random word switching. In this work, we propose EntityCS, a method that focuses on Entity-level Code-Switching to capture fine-grained cross-lingual semantics without corrupting syntax. We use Wikidata and English Wikipedia to construct an entity-centric CS corpus by switching entities to their counterparts in other languages. We further propose entity-oriented masking strategies during intermediate model training on the EntityCS corpus for improving entity prediction. Evaluation of the trained models on four entity-centric downstream tasks shows consistent improvements over the baseline with a notable increase of 10% in Fact Retrieval. We release the corpus and models to assist research on code-switching and enriching XLMs with external knowledge.
Grammatical Error Correction for Code-Switched Sentences by Learners of English
Code-switching (CSW) is a common phenomenon among multilingual speakers where multiple languages are used in a single discourse or utterance. Mixed language utterances may still contain grammatical errors however, yet most existing Grammar Error Correction (GEC) systems have been trained on monolingual data and not developed with CSW in mind. In this work, we conduct the first exploration into the use of GEC systems on CSW text. Through this exploration, we propose a novel method of generating synthetic CSW GEC datasets by translating different spans of text within existing GEC corpora. We then investigate different methods of selecting these spans based on CSW ratio, switch-point factor and linguistic constraints, and identify how they affect the performance of GEC systems on CSW text. Our best model achieves an average increase of 1.57 F_{0.5} across 3 CSW test sets (English-Chinese, English-Korean and English-Japanese) without affecting the model's performance on a monolingual dataset. We furthermore discovered that models trained on one CSW language generalise relatively well to other typologically similar CSW languages.
Jointly Training Large Autoregressive Multimodal Models
In recent years, advances in the large-scale pretraining of language and text-to-image models have revolutionized the field of machine learning. Yet, integrating these two modalities into a single, robust model capable of generating seamless multimodal outputs remains a significant challenge. To address this gap, we present the Joint Autoregressive Mixture (JAM) framework, a modular approach that systematically fuses existing text and image generation models. We also introduce a specialized, data-efficient instruction-tuning strategy, tailored for mixed-modal generation tasks. Our final instruct-tuned model demonstrates unparalleled performance in generating high-quality multimodal outputs and represents the first model explicitly designed for this purpose.
Robust Multimodal Learning with Missing Modalities via Parameter-Efficient Adaptation
Multimodal learning seeks to utilize data from multiple sources to improve the overall performance of downstream tasks. It is desirable for redundancies in the data to make multimodal systems robust to missing or corrupted observations in some correlated modalities. However, we observe that the performance of several existing multimodal networks significantly deteriorates if one or multiple modalities are absent at test time. To enable robustness to missing modalities, we propose a simple and parameter-efficient adaptation procedure for pretrained multimodal networks. In particular, we exploit modulation of intermediate features to compensate for the missing modalities. We demonstrate that such adaptation can partially bridge performance drop due to missing modalities and outperform independent, dedicated networks trained for the available modality combinations in some cases. The proposed adaptation requires extremely small number of parameters (e.g., fewer than 1% of the total parameters) and applicable to a wide range of modality combinations and tasks. We conduct a series of experiments to highlight the missing modality robustness of our proposed method on five different multimodal tasks across seven datasets. Our proposed method demonstrates versatility across various tasks and datasets, and outperforms existing methods for robust multimodal learning with missing modalities.
On Robustness in Multimodal Learning
Multimodal learning is defined as learning over multiple heterogeneous input modalities such as video, audio, and text. In this work, we are concerned with understanding how models behave as the type of modalities differ between training and deployment, a situation that naturally arises in many applications of multimodal learning to hardware platforms. We present a multimodal robustness framework to provide a systematic analysis of common multimodal representation learning methods. Further, we identify robustness short-comings of these approaches and propose two intervention techniques leading to 1.5times-4times robustness improvements on three datasets, AudioSet, Kinetics-400 and ImageNet-Captions. Finally, we demonstrate that these interventions better utilize additional modalities, if present, to achieve competitive results of 44.2 mAP on AudioSet 20K.
Sample-efficient Integration of New Modalities into Large Language Models
Multimodal foundation models can process several modalities. However, since the space of possible modalities is large and evolving over time, training a model from scratch to encompass all modalities is unfeasible. Moreover, integrating a modality into a pre-existing foundation model currently requires a significant amount of paired data, which is often not available for low-resource modalities. In this paper, we introduce a method for sample-efficient modality integration (SEMI) into Large Language Models (LLMs). To this end, we devise a hypernetwork that can adapt a shared projector -- placed between modality-specific encoders and an LLM -- to any modality. The hypernetwork, trained on high-resource modalities (i.e., text, speech, audio, video), is conditioned on a few samples from any arbitrary modality at inference time to generate a suitable adapter. To increase the diversity of training modalities, we artificially multiply the number of encoders through isometric transformations. We find that SEMI achieves a significant boost in sample efficiency during few-shot integration of new modalities (i.e., satellite images, astronomical images, inertial measurements, and molecules) with encoders of arbitrary embedding dimensionality. For instance, to reach the same accuracy as 32-shot SEMI, training the projector from scratch needs 64times more data. As a result, SEMI holds promise to extend the modality coverage of foundation models.
PILL: Plug Into LLM with Adapter Expert and Attention Gate
Due to the remarkable capabilities of powerful Large Language Models (LLMs) in effectively following instructions, there has been a growing number of assistants in the community to assist humans. Recently, significant progress has been made in the development of Vision Language Models (VLMs), expanding the capabilities of LLMs and enabling them to execute more diverse instructions. However, it is foreseeable that models will likely need to handle tasks involving additional modalities such as speech, video, and others. This poses a particularly prominent challenge of dealing with the complexity of mixed modalities. To address this, we introduce a novel architecture called PILL: Plug Into LLM with adapter expert and attention gate to better decouple these complex modalities and leverage efficient fine-tuning. We introduce two modules: Firstly, utilizing Mixture-of-Modality-Adapter-Expert to independently handle different modalities, enabling better adaptation to downstream tasks while preserving the expressive capability of the original model. Secondly, by introducing Modality-Attention-Gating, which enables adaptive control of the contribution of modality tokens to the overall representation. In addition, we have made improvements to the Adapter to enhance its learning and expressive capabilities. Experimental results demonstrate that our approach exhibits competitive performance compared to other mainstream methods for modality fusion. For researchers interested in our work, we provide free access to the code and models at https://github.com/DsaltYfish/PILL.
What Makes Multimodal In-Context Learning Work?
Large Language Models have demonstrated remarkable performance across various tasks, exhibiting the capacity to swiftly acquire new skills, such as through In-Context Learning (ICL) with minimal demonstration examples. In this work, we present a comprehensive framework for investigating Multimodal ICL (M-ICL) in the context of Large Multimodal Models. We consider the best open-source multimodal models (e.g., IDEFICS, OpenFlamingo) and a wide range of multimodal tasks. Our study unveils several noteworthy findings: (1) M-ICL primarily relies on text-driven mechanisms, showing little to no influence from the image modality. (2) When used with advanced-ICL strategy (like RICES), M-ICL is not better than a simple strategy based on majority voting over context examples. Moreover, we identify several biases and limitations of M-ICL that warrant consideration prior to deployment. Code available at https://gitlab.com/folbaeni/multimodal-icl
Boosting Multi-modal Model Performance with Adaptive Gradient Modulation
While the field of multi-modal learning keeps growing fast, the deficiency of the standard joint training paradigm has become clear through recent studies. They attribute the sub-optimal performance of the jointly trained model to the modality competition phenomenon. Existing works attempt to improve the jointly trained model by modulating the training process. Despite their effectiveness, those methods can only apply to late fusion models. More importantly, the mechanism of the modality competition remains unexplored. In this paper, we first propose an adaptive gradient modulation method that can boost the performance of multi-modal models with various fusion strategies. Extensive experiments show that our method surpasses all existing modulation methods. Furthermore, to have a quantitative understanding of the modality competition and the mechanism behind the effectiveness of our modulation method, we introduce a novel metric to measure the competition strength. This metric is built on the mono-modal concept, a function that is designed to represent the competition-less state of a modality. Through systematic investigation, our results confirm the intuition that the modulation encourages the model to rely on the more informative modality. In addition, we find that the jointly trained model typically has a preferred modality on which the competition is weaker than other modalities. However, this preferred modality need not dominate others. Our code will be available at https://github.com/lihong2303/AGM_ICCV2023.
EMMA: Efficient Visual Alignment in Multi-Modal LLMs
Multi-modal Large Language Models (MLLMs) have recently exhibited impressive general-purpose capabilities by leveraging vision foundation models to encode the core concepts of images into representations. These are then combined with instructions and processed by the language model to generate high-quality responses. Despite significant progress in enhancing the language component, challenges persist in optimally fusing visual encodings within the language model for task-specific adaptability. Recent research has focused on improving this fusion through modality adaptation modules but at the cost of significantly increased model complexity and training data needs. In this paper, we propose EMMA (Efficient Multi-Modal Adaptation), a lightweight cross-modality module designed to efficiently fuse visual and textual encodings, generating instruction-aware visual representations for the language model. Our key contributions include: (1) an efficient early fusion mechanism that integrates vision and language representations with minimal added parameters (less than 0.2% increase in model size), (2) an in-depth interpretability analysis that sheds light on the internal mechanisms of the proposed method; (3) comprehensive experiments that demonstrate notable improvements on both specialized and general benchmarks for MLLMs. Empirical results show that EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations. Our code is available at https://github.com/SaraGhazanfari/EMMA
WAVE: Learning Unified & Versatile Audio-Visual Embeddings with Multimodal LLM
While embeddings from multimodal large language models (LLMs) excel as general-purpose representations, their application to dynamic modalities like audio and video remains underexplored. We introduce WAVE (unified \& versatile audio-visual embeddings), the first LLM-based embedding that creates a unified representation space for text, audio, and video modalities. WAVE employs a novel hierarchical feature fusion strategy and a joint multi-modal, multi-task training approach to enable two key capabilities: any-to-any cross-modal retrieval and the generation of prompt-aware embeddings tailored to user instructions. Experimentally, WAVE sets a new state-of-the-art on the MMEB-v2 video benchmark and achieves superior results in audio and video-to-audio retrieval. Its prompt-aware nature also yields remarkable performance in multimodal question answering, significantly outperforming existing embedding models. Ablation studies validate our joint training strategy, demonstrating improved performance across all modalities. With a newly introduced benchmark for versatile audio-visual learning, WAVE opens up broad possibilities for cross-modal, any-to-any applications. Our code, checkpoints, and data will be released.
HiKE: Hierarchical Evaluation Framework for Korean-English Code-Switching Speech Recognition
Despite advances in multilingual automatic speech recognition (ASR), code-switching (CS), the mixing of languages within an utterance common in daily speech, remains a severely underexplored challenge. In this paper, we introduce HiKE: the Hierarchical Korean-English code-switching benchmark, the first globally accessible evaluation framework for Korean-English CS, aiming to provide a means for the precise evaluation of multilingual ASR models and to foster research in the field. The proposed framework not only consists of high-quality, natural CS data across various topics, but also provides meticulous loanword labels and a hierarchical CS-level labeling scheme (word, phrase, and sentence) that together enable a systematic evaluation of a model's ability to handle each distinct level of code-switching. Through evaluations of diverse multilingual ASR models and fine-tuning experiments, this paper demonstrates that while most multilingual ASR models initially struggle with CS-ASR, this capability can be enabled through fine-tuning with CS data. HiKE will be available at https://github.com/ThetaOne-AI/HiKE.
Breaking the Language Barrier: Improving Cross-Lingual Reasoning with Structured Self-Attention
In this work, we study whether multilingual language models (MultiLMs) can transfer logical reasoning abilities to other languages when they are fine-tuned for reasoning in a different language. We evaluate the cross-lingual reasoning abilities of MultiLMs in two schemes: (1) where the language of the context and the question remain the same in the new languages that are tested (i.e., the reasoning is still monolingual, but the model must transfer the learned reasoning ability across languages), and (2) where the language of the context and the question is different (which we term code-switched reasoning). On two logical reasoning datasets, RuleTaker and LeapOfThought, we demonstrate that although MultiLMs can transfer reasoning ability across languages in a monolingual setting, they struggle to transfer reasoning abilities in a code-switched setting. Following this observation, we propose a novel attention mechanism that uses a dedicated set of parameters to encourage cross-lingual attention in code-switched sequences, which improves the reasoning performance by up to 14% and 4% on the RuleTaker and LeapOfThought datasets, respectively.
Reformulating Vision-Language Foundation Models and Datasets Towards Universal Multimodal Assistants
Recent Multimodal Large Language Models (MLLMs) exhibit impressive abilities to perceive images and follow open-ended instructions. The capabilities of MLLMs depend on two crucial factors: the model architecture to facilitate the feature alignment of visual modules and large language models; the multimodal instruction tuning datasets for human instruction following. (i) For the model architecture, most existing models introduce an external bridge module to connect vision encoders with language models, which needs an additional feature-alignment pre-training. In this work, we discover that compact pre-trained vision language models can inherently serve as ``out-of-the-box'' bridges between vision and language. Based on this, we propose Muffin framework, which directly employs pre-trained vision-language models to act as providers of visual signals. (ii) For the multimodal instruction tuning datasets, existing methods omit the complementary relationship between different datasets and simply mix datasets from different tasks. Instead, we propose UniMM-Chat dataset which explores the complementarities of datasets to generate 1.1M high-quality and diverse multimodal instructions. We merge information describing the same image from diverse datasets and transforms it into more knowledge-intensive conversation data. Experimental results demonstrate the effectiveness of the Muffin framework and UniMM-Chat dataset. Muffin achieves state-of-the-art performance on a wide range of vision-language tasks, significantly surpassing state-of-the-art models like LLaVA and InstructBLIP. Our model and dataset are all accessible at https://github.com/thunlp/muffin.
Training-Free Multimodal Large Language Model Orchestration
Different Multimodal Large Language Models (MLLMs) cannot be integrated into a unified multimodal input-output system directly. In previous work, training has been considered as an inevitable component due to challenges in modal alignment, Text-to-Speech efficiency and other integration issues. In this paper, we introduce Multimodal Large Language Model Orchestration, an effective approach for creating interactive multimodal AI systems without additional training. MLLM Orchestration leverages the inherent reasoning capabilities of large language models to coordinate specialized models through explicit workflows, enabling natural multimodal interactions while maintaining modularity, improving interpretability, and significantly enhancing computational efficiency. Our orchestration framework is built upon three key innovations: (1) a central controller LLM that analyzes user inputs and dynamically routes tasks to appropriate specialized models through carefully designed agents; (2) a parallel Text-to-Speech architecture that enables true full-duplex interaction with seamless interruption handling and natural conversational flow; and (3) a cross-modal memory integration system that maintains coherent context across modalities through intelligent information synthesis and retrieval, selectively avoiding unnecessary modality calls in certain scenarios to improve response speed. Extensive evaluations demonstrate that MLLM Orchestration achieves comprehensive multimodal capabilities without additional training, performance improvements of up to 7.8% over traditional jointly-trained approaches on standard benchmarks, reduced latency by 10.3%, and significantly enhanced interpretability through explicit orchestration processes.
Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis
We propose to synthesize high-quality and synchronized audio, given video and optional text conditions, using a novel multimodal joint training framework MMAudio. In contrast to single-modality training conditioned on (limited) video data only, MMAudio is jointly trained with larger-scale, readily available text-audio data to learn to generate semantically aligned high-quality audio samples. Additionally, we improve audio-visual synchrony with a conditional synchronization module that aligns video conditions with audio latents at the frame level. Trained with a flow matching objective, MMAudio achieves new video-to-audio state-of-the-art among public models in terms of audio quality, semantic alignment, and audio-visual synchronization, while having a low inference time (1.23s to generate an 8s clip) and just 157M parameters. MMAudio also achieves surprisingly competitive performance in text-to-audio generation, showing that joint training does not hinder single-modality performance. Code and demo are available at: https://hkchengrex.github.io/MMAudio
Alt-MoE:A Scalable Framework for Bidirectional Multimodal Alignment and Efficient Knowledge Integration
Multimodal learning has advanced significantly by aligning different modalities within shared latent spaces, enabling tasks such as cross-modal understanding and generation. Current alignment strategies in multimodal learning primarily include direct alignment using pre-trained or unified encoders and single-directional alignment via modality-specific connectors. Direct alignment struggles to fully leverage rich intra-modal knowledge, often requiring extensive training data to achieve cross-modal representation. Meanwhile, single-directional alignment methods, despite leveraging pre-trained knowledge, restrict task adaptability and hinder the model's ability to capture bidirectional relationships, leading to incomplete knowledge fusion and underutilization of complementary modality-specific information. To address these limitations, we introduce Alt-MoE, a scalable multimodal alignment framework that employs a mixture of experts (MoE) model as a multi-directional connector across modalities. By utilizing a sequential alternating one-way alignment strategy, Alt-MoE iteratively refines the model to achieve bidirectional alignment. Alt-MoE operates in latent space, enabling efficient vector pre-storage and real-time retrieval via MoE, optimizing large-scale data processing. Extensive empirical studies demonstrate that Alt-MoE achieves competitive performance on cross-modal retrieval and visual question answering by integrating diverse modality-specific knowledge, generalizing to unseen data, and easily scaling to new tasks and modalities through dynamic adjustment of MoE capacity and expert activation.
Language Specific Knowledge: Do Models Know Better in X than in English?
Code-switching is a common phenomenon of alternating between different languages in the same utterance, thought, or conversation. We posit that humans code-switch because they feel more comfortable talking about certain topics and domains in one language than another. With the rise of knowledge-intensive language models, we ask ourselves the next, natural question: Could models hold more knowledge on some topics in some language X? More importantly, could we improve reasoning by changing the language that reasoning is performed in? We coin the term Language Specific Knowledge (LSK) to represent this phenomenon. As ethnic cultures tend to develop alongside different languages, we employ culture-specific datasets (that contain knowledge about cultural and social behavioral norms). We find that language models can perform better when using chain-of-thought reasoning in some languages other than English, sometimes even better in low-resource languages. Paired with previous works showing that semantic similarity does not equate to representational similarity, we hypothesize that culturally specific texts occur more abundantly in corresponding languages, enabling specific knowledge to occur only in specific "expert" languages. Motivated by our initial results, we design a simple methodology called LSKExtractor to benchmark the language-specific knowledge present in a language model and, then, exploit it during inference. We show our results on various models and datasets, showing an average relative improvement of 10% in accuracy. Our research contributes to the open-source development of language models that are inclusive and more aligned with the cultural and linguistic contexts in which they are deployed.
Training Vision-Language Models with Less Bimodal Supervision
Standard practice in pretraining multimodal models, such as vision-language models, is to rely on pairs of aligned inputs from both modalities, for example, aligned image-text pairs. However, such pairs can be difficult to obtain in low-resource settings and for some modality pairs (e.g., structured tables and images). In this work, we investigate the extent to which we can reduce the reliance on such parallel data, which we term bimodal supervision, and use models that are pretrained on each modality independently. We experiment with a high-performing vision-language model, and analyze the effect of bimodal supervision on three vision-language tasks. We find that on simpler tasks, such as VQAv2 and GQA, one can eliminate bimodal supervision completely, suffering only a minor loss in performance. Conversely, for NLVR2, which requires more complex reasoning, training without bimodal supervision leads to random performance. Nevertheless, using only 5\% of the bimodal data (142K images along with their captions), or leveraging weak supervision in the form of a list of machine-generated labels for each image, leads to only a moderate degradation compared to using 3M image-text pairs: 74\%rightarrowsim70\%. Our code is available at https://github.com/eladsegal/less-bimodal-sup.
Multimodal Graph Learning for Generative Tasks
Multimodal learning combines multiple data modalities, broadening the types and complexity of data our models can utilize: for example, from plain text to image-caption pairs. Most multimodal learning algorithms focus on modeling simple one-to-one pairs of data from two modalities, such as image-caption pairs, or audio-text pairs. However, in most real-world settings, entities of different modalities interact with each other in more complex and multifaceted ways, going beyond one-to-one mappings. We propose to represent these complex relationships as graphs, allowing us to capture data with any number of modalities, and with complex relationships between modalities that can flexibly vary from one sample to another. Toward this goal, we propose Multimodal Graph Learning (MMGL), a general and systematic framework for capturing information from multiple multimodal neighbors with relational structures among them. In particular, we focus on MMGL for generative tasks, building upon pretrained Language Models (LMs), aiming to augment their text generation with multimodal neighbor contexts. We study three research questions raised by MMGL: (1) how can we infuse multiple neighbor information into the pretrained LMs, while avoiding scalability issues? (2) how can we infuse the graph structure information among multimodal neighbors into the LMs? and (3) how can we finetune the pretrained LMs to learn from the neighbor context in a parameter-efficient manner? We conduct extensive experiments to answer these three questions on MMGL and analyze the empirical results to pave the way for future MMGL research.
CSRT: Evaluation and Analysis of LLMs using Code-Switching Red-Teaming Dataset
Recent studies in large language models (LLMs) shed light on their multilingual ability and safety, beyond conventional tasks in language modeling. Still, current benchmarks reveal their inability to comprehensively evaluate them and are excessively dependent on manual annotations. In this paper, we introduce code-switching red-teaming (CSRT), a simple yet effective red-teaming technique that simultaneously tests multilingual understanding and safety of LLMs. We release the CSRT dataset, which comprises 315 code-switching queries combining up to 10 languages and eliciting a wide range of undesirable behaviors. Through extensive experiments with ten state-of-the-art LLMs, we demonstrate that CSRT significantly outperforms existing multilingual red-teaming techniques, achieving 46.7% more attacks than existing methods in English. We analyze the harmful responses toward the CSRT dataset concerning various aspects under ablation studies with 16K samples, including but not limited to scaling laws, unsafe behavior categories, and input conditions for optimal data generation. Additionally, we validate the extensibility of CSRT, by generating code-switching attack prompts with monolingual data.
MCITlib: Multimodal Continual Instruction Tuning Library and Benchmark
Continual learning aims to equip AI systems with the ability to continuously acquire and adapt to new knowledge without forgetting previously learned information, similar to human learning. While traditional continual learning methods focusing on unimodal tasks have achieved notable success, the emergence of Multimodal Large Language Models has brought increasing attention to Multimodal Continual Learning tasks involving multiple modalities, such as vision and language. In this setting, models are expected to not only mitigate catastrophic forgetting but also handle the challenges posed by cross-modal interactions and coordination. To facilitate research in this direction, we introduce MCITlib, a comprehensive and constantly evolving code library for continual instruction tuning of Multimodal Large Language Models. In MCITlib, we have currently implemented 8 representative algorithms for Multimodal Continual Instruction Tuning and systematically evaluated them on 2 carefully selected benchmarks. MCITlib will be continuously updated to reflect advances in the Multimodal Continual Learning field. The codebase is released at https://github.com/Ghy0501/MCITlib.
MiPa: Mixed Patch Infrared-Visible Modality Agnostic Object Detection
In real-world scenarios, using multiple modalities like visible (RGB) and infrared (IR) can greatly improve the performance of a predictive task such as object detection (OD). Multimodal learning is a common way to leverage these modalities, where multiple modality-specific encoders and a fusion module are used to improve performance. In this paper, we tackle a different way to employ RGB and IR modalities, where only one modality or the other is observed by a single shared vision encoder. This realistic setting requires a lower memory footprint and is more suitable for applications such as autonomous driving and surveillance, which commonly rely on RGB and IR data. However, when learning a single encoder on multiple modalities, one modality can dominate the other, producing uneven recognition results. This work investigates how to efficiently leverage RGB and IR modalities to train a common transformer-based OD vision encoder, while countering the effects of modality imbalance. For this, we introduce a novel training technique to Mix Patches (MiPa) from the two modalities, in conjunction with a patch-wise modality agnostic module, for learning a common representation of both modalities. Our experiments show that MiPa can learn a representation to reach competitive results on traditional RGB/IR benchmarks while only requiring a single modality during inference. Our code is available at: https://github.com/heitorrapela/MiPa.
Aya Vision: Advancing the Frontier of Multilingual Multimodality
Building multimodal language models is fundamentally challenging: it requires aligning vision and language modalities, curating high-quality instruction data, and avoiding the degradation of existing text-only capabilities once vision is introduced. These difficulties are further magnified in the multilingual setting, where the need for multimodal data in different languages exacerbates existing data scarcity, machine translation often distorts meaning, and catastrophic forgetting is more pronounced. To address the aforementioned challenges, we introduce novel techniques spanning both data and modeling. First, we develop a synthetic annotation framework that curates high-quality, diverse multilingual multimodal instruction data, enabling Aya Vision models to produce natural, human-preferred responses to multimodal inputs across many languages. Complementing this, we propose a cross-modal model merging technique that mitigates catastrophic forgetting, effectively preserving text-only capabilities while simultaneously enhancing multimodal generative performance. Aya-Vision-8B achieves best-in-class performance compared to strong multimodal models such as Qwen-2.5-VL-7B, Pixtral-12B, and even much larger Llama-3.2-90B-Vision. We further scale this approach with Aya-Vision-32B, which outperforms models more than twice its size, such as Molmo-72B and LLaMA-3.2-90B-Vision. Our work advances multilingual progress on the multi-modal frontier, and provides insights into techniques that effectively bend the need for compute while delivering extremely high performance.
The Decades Progress on Code-Switching Research in NLP: A Systematic Survey on Trends and Challenges
Code-Switching, a common phenomenon in written text and conversation, has been studied over decades by the natural language processing (NLP) research community. Initially, code-switching is intensively explored by leveraging linguistic theories and, currently, more machine-learning oriented approaches to develop models. We introduce a comprehensive systematic survey on code-switching research in natural language processing to understand the progress of the past decades and conceptualize the challenges and tasks on the code-switching topic. Finally, we summarize the trends and findings and conclude with a discussion for future direction and open questions for further investigation.
MoIIE: Mixture of Intra- and Inter-Modality Experts for Large Vision Language Models
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across multi-modal tasks by scaling model size and training data. However, these dense LVLMs incur significant computational costs and motivate the exploration of sparse Mixture of Experts (MoE) architectures. While MoE improve parameter efficiency, effectively applying MoE to simultaneously model modality-specific features and cross-modal associations in LVLMs remains challenging. In this work, we propose to incorporate Mixture of Intra- and Inter-Modality Experts (MoIIE) to LVLMs. For each token, expert routing is guided by its modality, directing tokens to their respective intra-modality experts as well as a shared pool of inter-modality experts, enabling the model to jointly learn rich intra-modal features and cross-modal interactions. We further introduce an effective and straightforward two-stage training strategy, which facilitates the direct activation of both MoE and multi-modal capabilities. Extensive experiments across different data scales and LLM backbone demonstrate the effectiveness, efficiency and generality of our approach. Notably, our MoIIE models with 5.5B and 11.3B activated parameters match or even surpass the performance of existing advanced open-source MoE-LLMs based multi-modal models that involve more activated parameters. The code is available at https://github.com/AlenjandroWang/MoIIE.
SpeechGPT: Empowering Large Language Models with Intrinsic Cross-Modal Conversational Abilities
Multi-modal large language models are regarded as a crucial step towards Artificial General Intelligence (AGI) and have garnered significant interest with the emergence of ChatGPT. However, current speech-language models typically adopt the cascade paradigm, preventing inter-modal knowledge transfer. In this paper, we propose SpeechGPT, a large language model with intrinsic cross-modal conversational abilities, capable of perceiving and generating multi-model content. With discrete speech representations, we first construct SpeechInstruct, a large-scale cross-modal speech instruction dataset. Additionally, we employ a three-stage training strategy that includes modality-adaptation pre-training, cross-modal instruction fine-tuning, and chain-of-modality instruction fine-tuning. The experimental results demonstrate that SpeechGPT has an impressive capacity to follow multi-modal human instructions and highlight the potential of handling multiple modalities with one model. Demos are shown in https://0nutation.github.io/SpeechGPT.github.io/.
MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models
Interleaved multimodal comprehension and generation, enabling models to produce and interpret both images and text in arbitrary sequences, have become a pivotal area in multimodal learning. Despite significant advancements, the evaluation of this capability remains insufficient. Existing benchmarks suffer from limitations in data scale, scope, and evaluation depth, while current evaluation metrics are often costly or biased, lacking in reliability for practical applications. To address these challenges, we introduce MMIE, a large-scale knowledge-intensive benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs). MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts. It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies. Moreover, we propose a reliable automated evaluation metric, leveraging a scoring model fine-tuned with human-annotated data and systematic evaluation criteria, aimed at reducing bias and improving evaluation accuracy. Extensive experiments demonstrate the effectiveness of our benchmark and metrics in providing a comprehensive evaluation of interleaved LVLMs. Specifically, we evaluate eight LVLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. We believe MMIE will drive further advancements in the development of interleaved LVLMs. We publicly release our benchmark and code in https://mmie-bench.github.io/.
Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey
The rapid advancement of large language models (LLMs) has intensified the need for effective mechanisms to transform continuous multimodal data into discrete representations suitable for language-based processing. Discrete tokenization, with vector quantization (VQ) as a central approach, offers both computational efficiency and compatibility with LLM architectures. Despite its growing importance, there is a lack of a comprehensive survey that systematically examines VQ techniques in the context of LLM-based systems. This work fills this gap by presenting the first structured taxonomy and analysis of discrete tokenization methods designed for LLMs. We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines. Beyond algorithm-level investigation, we discuss existing research in terms of classical applications without LLMs, LLM-based single-modality systems, and LLM-based multimodal systems, highlighting how quantization strategies influence alignment, reasoning, and generation performance. In addition, we identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints. Finally, we discuss emerging research directions such as dynamic and task-adaptive quantization, unified tokenization frameworks, and biologically inspired codebook learning. This survey bridges the gap between traditional vector quantization and modern LLM applications, serving as a foundational reference for the development of efficient and generalizable multimodal systems. A continuously updated version is available at: https://github.com/jindongli-Ai/LLM-Discrete-Tokenization-Survey.
CONFLATOR: Incorporating Switching Point based Rotatory Positional Encodings for Code-Mixed Language Modeling
The mixing of two or more languages is called Code-Mixing (CM). CM is a social norm in multilingual societies. Neural Language Models (NLMs) like transformers have been effective on many NLP tasks. However, NLM for CM is an under-explored area. Though transformers are capable and powerful, they cannot always encode positional information since they are non-recurrent. Therefore, to enrich word information and incorporate positional information, positional encoding is defined. We hypothesize that Switching Points (SPs), i.e., junctions in the text where the language switches (L1 -> L2 or L2 -> L1), pose a challenge for CM Language Models (LMs), and hence give special emphasis to SPs in the modeling process. We experiment with several positional encoding mechanisms and show that rotatory positional encodings along with switching point information yield the best results. We introduce CONFLATOR: a neural language modeling approach for code-mixed languages. CONFLATOR tries to learn to emphasize switching points using smarter positional encoding, both at unigram and bigram levels. CONFLATOR outperforms the state-of-the-art on two tasks based on code-mixed Hindi and English (Hinglish): (i) sentiment analysis and (ii) machine translation.
How2: A Large-scale Dataset for Multimodal Language Understanding
In this paper, we introduce How2, a multimodal collection of instructional videos with English subtitles and crowdsourced Portuguese translations. We also present integrated sequence-to-sequence baselines for machine translation, automatic speech recognition, spoken language translation, and multimodal summarization. By making available data and code for several multimodal natural language tasks, we hope to stimulate more research on these and similar challenges, to obtain a deeper understanding of multimodality in language processing.
What Matters in Training a GPT4-Style Language Model with Multimodal Inputs?
Recent advancements in Large Language Models (LLMs) such as GPT4 have displayed exceptional multi-modal capabilities in following open-ended instructions given images. However, the performance of these models heavily relies on design choices such as network structures, training data, and training strategies, and these choices have not been extensively discussed in the literature, making it difficult to quantify progress in this field. To address this issue, this paper presents a systematic and comprehensive study, quantitatively and qualitatively, on training such models. We implement over 20 variants with controlled settings. Concretely, for network structures, we compare different LLM backbones and model designs. For training data, we investigate the impact of data and sampling strategies. For instructions, we explore the influence of diversified prompts on the instruction-following ability of the trained models. For benchmarks, we contribute the first, to our best knowledge, comprehensive evaluation set including both image and video tasks through crowd-sourcing. Based on our findings, we present Lynx, which performs the most accurate multi-modal understanding while keeping the best multi-modal generation ability compared to existing open-sourced GPT4-style models.
Multimodal Pathway: Improve Transformers with Irrelevant Data from Other Modalities
We propose to improve transformers of a specific modality with irrelevant data from other modalities, e.g., improve an ImageNet model with audio or point cloud datasets. We would like to highlight that the data samples of the target modality are irrelevant to the other modalities, which distinguishes our method from other works utilizing paired (e.g., CLIP) or interleaved data of different modalities. We propose a methodology named Multimodal Pathway - given a target modality and a transformer designed for it, we use an auxiliary transformer trained with data of another modality and construct pathways to connect components of the two models so that data of the target modality can be processed by both models. In this way, we utilize the universal sequence-to-sequence modeling abilities of transformers obtained from two modalities. As a concrete implementation, we use a modality-specific tokenizer and task-specific head as usual but utilize the transformer blocks of the auxiliary model via a proposed method named Cross-Modal Re-parameterization, which exploits the auxiliary weights without any inference costs. On the image, point cloud, video, and audio recognition tasks, we observe significant and consistent performance improvements with irrelevant data from other modalities. The code and models are available at https://github.com/AILab-CVC/M2PT.
Multimodal Instruction Tuning with Conditional Mixture of LoRA
Multimodal Large Language Models (MLLMs) have demonstrated remarkable proficiency in diverse tasks across different domains, with an increasing focus on improving their zero-shot generalization capabilities for unseen multimodal tasks. Multimodal instruction tuning has emerged as a successful strategy for achieving zero-shot generalization by fine-tuning pre-trained models on diverse multimodal tasks through instructions. As MLLMs grow in complexity and size, the need for parameter-efficient fine-tuning methods like Low-Rank Adaption (LoRA), which fine-tunes with a minimal set of parameters, becomes essential. However, applying LoRA in multimodal instruction tuning presents the challenge of task interference, which leads to performance degradation, especially when dealing with a broad array of multimodal tasks. To address this, this paper introduces a novel approach that integrates multimodal instruction tuning with Conditional Mixture-of-LoRA (MixLoRA). It innovates upon LoRA by dynamically constructing low-rank adaptation matrices tailored to the unique demands of each input instance, aiming to mitigate task interference. Experimental results on various multimodal evaluation datasets indicate that MixLoRA not only outperforms the conventional LoRA with the same or even higher ranks, demonstrating its efficacy and adaptability in diverse multimodal tasks.
