new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Unveiling Super Experts in Mixture-of-Experts Large Language Models

Sparsely activated Mixture-of-Experts (MoE) models have shown promise in enhancing the learning capacity of large language models (LLMs). Leveraging the intrinsic importance differences among experts, recent research has explored expert-level compression techniques to improve the efficiency of MoE LLMs. However, existing approaches often rely on empirical criteria to identify critical experts, lacking a deeper exploration and understanding of the heterogeneous importance of experts. In this study, we present the first discovery and investigation of a distinct subset of experts that play a crucial role in the underlying mechanisms during the model's forward inference. These experts are prevalent in open-source MoE LLMs, and despite their limited number, pruning them leads to a significant decline in model performance (e.g., pruning three causes Qwen3-30B-A3B to produce repetitive and uninformative outputs). We refer to these experts as Super Experts (SEs). Our comprehensive analysis provides progressively deeper insights into SEs. (i) SEs are characterized by rare but extreme activation outliers in the output of the down_proj, which give rise to massive activations in the hidden states between decoder layers. Moreover, the distribution of SEs remains model-specific and is unaffected by post-training processes. (ii) By pruning SEs, we assess their significance across a variety of tasks, revealing their considerable impact on the model's overall performance, particularly in mathematical reasoning. (iii) We further enhance our understanding of the influence of SEs compression. Our findings confirm that MoE LLMs rely on SEs to induce attention sinks, which are crucial for the distribution of attention scores but are significantly disrupted by SE pruning. The code is available at https://github.com/ZunhaiSu/Super-Experts-Profilling.

  • 6 authors
·
Jul 31

FSMoE: A Flexible and Scalable Training System for Sparse Mixture-of-Experts Models

Recent large language models (LLMs) have tended to leverage sparsity to reduce computations, employing the sparsely activated mixture-of-experts (MoE) technique. MoE introduces four modules, including token routing, token communication, expert computation, and expert parallelism, that impact model quality and training efficiency. To enable versatile usage of MoE models, we introduce FSMoE, a flexible training system optimizing task scheduling with three novel techniques: 1) Unified abstraction and online profiling of MoE modules for task scheduling across various MoE implementations. 2) Co-scheduling intra-node and inter-node communications with computations to minimize communication overheads. 3) To support near-optimal task scheduling, we design an adaptive gradient partitioning method for gradient aggregation and a schedule to adaptively pipeline communications and computations. We conduct extensive experiments with configured MoE layers and real-world MoE models on two GPU clusters. Experimental results show that 1) our FSMoE supports four popular types of MoE routing functions and is more efficient than existing implementations (with up to a 1.42times speedup), and 2) FSMoE outperforms the state-of-the-art MoE training systems (DeepSpeed-MoE and Tutel) by 1.18times-1.22times on 1458 MoE layers and 1.19times-3.01times on real-world MoE models based on GPT-2 and Mixtral using a popular routing function.

  • 8 authors
·
Jan 18

Merge, Then Compress: Demystify Efficient SMoE with Hints from Its Routing Policy

Sparsely activated Mixture-of-Experts (SMoE) has shown promise to scale up the learning capacity of neural networks, however, they have issues like (a) High Memory Usage, due to duplication of the network layers into multiple copies as experts; and (b) Redundancy in Experts, as common learning-based routing policies suffer from representational collapse. Therefore, vanilla SMoE models are memory inefficient and non-scalable, especially for resource-constrained downstream scenarios. In this paper, we ask: Can we craft a compact SMoE model by consolidating expert information? What is the best recipe to merge multiple experts into fewer but more knowledgeable experts? Our pilot investigation reveals that conventional model merging methods fail to be effective in such expert merging for SMoE. The potential reasons are: (1) redundant information overshadows critical experts; (2) appropriate neuron permutation for each expert is missing to bring all of them in alignment. To address this, we propose M-SMoE, which leverages routing statistics to guide expert merging. Specifically, it starts with neuron permutation alignment for experts; then, dominant experts and their "group members" are formed; lastly, every expert group is merged into a single expert by utilizing each expert's activation frequency as their weight for merging, thus diminishing the impact of insignificant experts. Moreover, we observed that our proposed merging promotes a low dimensionality in the merged expert's weight space, naturally paving the way for additional compression. Hence, our final method, MC-SMoE (i.e., Merge, then Compress SMoE), further decomposes the merged experts into low-rank and structural sparse alternatives. Extensive experiments across 8 benchmarks validate the effectiveness of MC-SMoE. For instance, our MC-SMoE achieves up to 80% memory and a 20% FLOPs reduction, with virtually no loss in performance.

  • 7 authors
·
Oct 2, 2023

Sparse MoE as the New Dropout: Scaling Dense and Self-Slimmable Transformers

Despite their remarkable achievement, gigantic transformers encounter significant drawbacks, including exorbitant computational and memory footprints during training, as well as severe collapse evidenced by a high degree of parameter redundancy. Sparsely-activated Mixture-of-Experts (SMoEs) have shown promise to mitigate the issue of training efficiency, yet they are prone to (1) redundant experts due to representational collapse; and (2) poor expert scalability for inference and downstream fine-tuning, primarily due to overfitting of the learned routing policy to the number of activated experts during training. As recent research efforts are predominantly focused on improving routing policies to encourage expert specializations, this work focuses on exploring the overlooked scalability bottleneck of SMoEs and leveraging it to effectively scale dense transformers. To this end, we propose a new plug-and-play training framework, SMoE-Dropout, to enable scaling transformers to better accuracy in their full capacity without collapse. Specifically, SMoE-Dropout consists of a randomly initialized and fixed router network to activate experts and gradually increases the activated expert number as training progresses over time. Transformers trained by SMoE-Dropout naturally exhibit a self-slimmable property subject to resource availability, offering smooth and consistent performance boosts with an increase in activated experts during inference or fine-tuning. Our extensive experiments demonstrate the superior performance and substantial computation savings of SMoE-Dropout, compared to dense training baselines with equivalent parameter counts. In particular, our trained BERT outperforms its densely trained counterpart with consistent improvements of {1.03%, 0.78%, 1.09%} on challenging reasoning tasks {ASDiv-A, MAWPS, SVAMP}, respectively.

  • 5 authors
·
Mar 2, 2023

MoE-LLaVA: Mixture of Experts for Large Vision-Language Models

For Large Vision-Language Models (LVLMs), scaling the model can effectively improve performance. However, expanding model parameters significantly increases the training and inferring costs, as all model parameters are activated for each token in the calculation. In this work, we propose a novel training strategy MoE-tuning for LVLMs, which can constructing a sparse model with an outrageous number of parameter but a constant computational cost, and effectively addresses the performance degradation typically associated with multi-modal learning and model sparsity. Furthermore, we present the MoE-LLaVA framework, a MoE-based sparse LVLM architecture. This framework uniquely activates only the top-k experts through routers during deployment, keeping the remaining experts inactive. Our extensive experiments highlight the excellent capabilities of MoE-LLaVA in visual understanding and its potential to reduce hallucinations in model outputs. Remarkably, with just 3 billion sparsely activated parameters, MoE-LLaVA demonstrates performance comparable to the LLaVA-1.5-7B on various visual understanding datasets and even surpasses the LLaVA-1.5-13B in object hallucination benchmarks. Through MoE-LLaVA, we aim to establish a baseline for sparse LVLMs and provide valuable insights for future research in developing more efficient and effective multi-modal learning systems. Code is released at https://github.com/PKU-YuanGroup/MoE-LLaVA.

  • 9 authors
·
Jan 29, 2024 4

Taming Sparsely Activated Transformer with Stochastic Experts

Sparsely activated models (SAMs), such as Mixture-of-Experts (MoE), can easily scale to have outrageously large amounts of parameters without significant increase in computational cost. However, SAMs are reported to be parameter inefficient such that larger models do not always lead to better performance. While most on-going research focuses on improving SAMs models by exploring methods of routing inputs to experts, our analysis reveals that such research might not lead to the solution we expect, i.e., the commonly-used routing methods based on gating mechanisms do not work better than randomly routing inputs to experts. In this paper, we propose a new expert-based model, THOR (Transformer witH StOchastic ExpeRts). Unlike classic expert-based models, such as the Switch Transformer, experts in THOR are randomly activated for each input during training and inference. THOR models are trained using a consistency regularized loss, where experts learn not only from training data but also from other experts as teachers, such that all the experts make consistent predictions. We validate the effectiveness of THOR on machine translation tasks. Results show that THOR models are more parameter efficient in that they significantly outperform the Transformer and MoE models across various settings. For example, in multilingual translation, THOR outperforms the Switch Transformer by 2 BLEU scores, and obtains the same BLEU score as that of a state-of-the-art MoE model that is 18 times larger. Our code is publicly available at: https://github.com/microsoft/Stochastic-Mixture-of-Experts.

  • 8 authors
·
Oct 8, 2021

CLIP-MoE: Towards Building Mixture of Experts for CLIP with Diversified Multiplet Upcycling

In recent years, Contrastive Language-Image Pre-training (CLIP) has become a cornerstone in multimodal intelligence. However, recent studies have identified that the information loss in the CLIP encoding process is substantial, and CLIP tends to capture only coarse-grained features from the input. This deficiency significantly limits the ability of a single CLIP model to handle images rich in visual detail. In this work, we propose a simple yet effective model-agnostic strategy, Diversified Multiplet Upcycling (DMU), for CLIP. DMU efficiently fine-tunes a series of CLIP models that capture different feature spaces, from a dense pre-trained CLIP checkpoint, sharing parameters except for the Feed-Forward Network (FFN). These models can then be transformed into a CLIP-MoE with a larger model capacity, leading to significantly enhanced performance with minimal computational overhead. To the best of our knowledge, Diversified Multiplet Upcycling is the first approach to introduce sparsely activated MoE into CLIP foundation models. Extensive experiments demonstrate the significant performance of CLIP-MoE across various zero-shot retrieval, zero-shot image classification tasks, and downstream Multimodal Large Language Model (MLLM) benchmarks by serving as a vision encoder. Furthermore, Diversified Multiplet Upcycling enables the conversion of any dense CLIP model into CLIP-MoEs, which can seamlessly replace CLIP in a plug-and-play manner without requiring further adaptation in downstream frameworks. Through Diversified Multiplet Upcycling, we aim to provide valuable insights for future research on developing more efficient and effective multimodal learning systems.

  • 4 authors
·
Sep 28, 2024 2

Expertise need not monopolize: Action-Specialized Mixture of Experts for Vision-Language-Action Learning

Vision-Language-Action (VLA) models are experiencing rapid development and demonstrating promising capabilities in robotic manipulation tasks. However, scaling up VLA models presents several critical challenges: (1) Training new VLA models from scratch demands substantial computational resources and extensive datasets. Given the current scarcity of robot data, it becomes particularly valuable to fully leverage well-pretrained VLA model weights during the scaling process. (2) Real-time control requires carefully balancing model capacity with computational efficiency. To address these challenges, We propose AdaMoE, a Mixture-of-Experts (MoE) architecture that inherits pretrained weights from dense VLA models, and scales up the action expert by substituting the feedforward layers into sparsely activated MoE layers. AdaMoE employs a decoupling technique that decouples expert selection from expert weighting through an independent scale adapter working alongside the traditional router. This enables experts to be selected based on task relevance while contributing with independently controlled weights, allowing collaborative expert utilization rather than winner-takes-all dynamics. Our approach demonstrates that expertise need not monopolize. Instead, through collaborative expert utilization, we can achieve superior performance while maintaining computational efficiency. AdaMoE consistently outperforms the baseline model across key benchmarks, delivering performance gains of 1.8% on LIBERO and 9.3% on RoboTwin. Most importantly, a substantial 21.5% improvement in real-world experiments validates its practical effectiveness for robotic manipulation tasks.

  • 13 authors
·
Oct 16 2

BlockFFN: Towards End-Side Acceleration-Friendly Mixture-of-Experts with Chunk-Level Activation Sparsity

To alleviate the computational burden of large language models (LLMs), architectures with activation sparsity, represented by mixture-of-experts (MoE), have attracted increasing attention. However, the non-differentiable and inflexible routing of vanilla MoE hurts model performance. Moreover, while each token activates only a few parameters, these sparsely-activated architectures exhibit low chunk-level sparsity, indicating that the union of multiple consecutive tokens activates a large ratio of parameters. Such a sparsity pattern is unfriendly for acceleration under low-resource conditions (e.g., end-side devices) and incompatible with mainstream acceleration techniques (e.g., speculative decoding). To address these challenges, we introduce a novel MoE architecture, BlockFFN, as well as its efficient training and deployment techniques. Specifically, we use a router integrating ReLU activation and RMSNorm for differentiable and flexible routing. Next, to promote both token-level sparsity (TLS) and chunk-level sparsity (CLS), CLS-aware training objectives are designed, making BlockFFN more acceleration-friendly. Finally, we implement efficient acceleration kernels, combining activation sparsity and speculative decoding for the first time. The experimental results demonstrate the superior performance of BlockFFN over other MoE baselines, achieving over 80% TLS and 70% 8-token CLS. Our kernels achieve up to 3.67times speedup on real end-side devices than dense models. All codes and checkpoints are available publicly (https://github.com/thunlp/BlockFFN).

  • 8 authors
·
Jul 11 1

Build a Robust QA System with Transformer-based Mixture of Experts

In this paper, we aim to build a robust question answering system that can adapt to out-of-domain datasets. A single network may overfit to the superficial correlation in the training distribution, but with a meaningful number of expert sub-networks, a gating network that selects a sparse combination of experts for each input, and careful balance on the importance of expert sub-networks, the Mixture-of-Experts (MoE) model allows us to train a multi-task learner that can be generalized to out-of-domain datasets. We also explore the possibility of bringing the MoE layers up to the middle of the DistilBERT and replacing the dense feed-forward network with a sparsely-activated switch FFN layers, similar to the Switch Transformer architecture, which simplifies the MoE routing algorithm with reduced communication and computational costs. In addition to model architectures, we explore techniques of data augmentation including Easy Data Augmentation (EDA) and back translation, to create more meaningful variance among the small out-of-domain training data, therefore boosting the performance and robustness of our models. In this paper, we show that our combination of best architecture and data augmentation techniques achieves a 53.477 F1 score in the out-of-domain evaluation, which is a 9.52% performance gain over the baseline. On the final test set, we reported a higher 59.506 F1 and 41.651 EM. We successfully demonstrate the effectiveness of Mixture-of-Expert architecture in a Robust QA task.

  • 3 authors
·
Mar 19, 2022

Not All Models Suit Expert Offloading: On Local Routing Consistency of Mixture-of-Expert Models

Mixture-of-Experts (MoE) enables efficient scaling of large language models (LLMs) with sparsely activated experts during inference. To effectively deploy large MoE models on memory-constrained devices, many systems introduce *expert offloading* that caches a subset of experts in fast memory, leaving others on slow memory to run on CPU or load on demand. While some research has exploited the locality of expert activations, where consecutive tokens activate similar experts, the degree of this **local routing consistency** varies across models and remains understudied. In this paper, we propose two metrics to measure local routing consistency of MoE models: (1) **Segment Routing Best Performance (SRP)**, which evaluates how well a fixed group of experts can cover the needs of a segment of tokens, and (2) **Segment Cache Best Hit Rate (SCH)**, which measures the optimal segment-level cache hit rate under a given cache size limit. We analyzed 20 MoE LLMs with diverse sizes and architectures and found that models that apply MoE on every layer and do not use shared experts exhibit the highest local routing consistency. We further showed that domain-specialized experts contribute more to routing consistency than vocabulary-specialized ones, and that most models can balance between cache effectiveness and efficiency with cache sizes approximately 2x the active experts. These findings pave the way for memory-efficient MoE design and deployment without compromising inference speed. We publish the code for replicating experiments at https://github.com/ljcleo/moe-lrc .

  • 6 authors
·
May 21 2

Experts Weights Averaging: A New General Training Scheme for Vision Transformers

Structural re-parameterization is a general training scheme for Convolutional Neural Networks (CNNs), which achieves performance improvement without increasing inference cost. As Vision Transformers (ViTs) are gradually surpassing CNNs in various visual tasks, one may question: if a training scheme specifically for ViTs exists that can also achieve performance improvement without increasing inference cost? Recently, Mixture-of-Experts (MoE) has attracted increasing attention, as it can efficiently scale up the capacity of Transformers at a fixed cost through sparsely activated experts. Considering that MoE can also be viewed as a multi-branch structure, can we utilize MoE to implement a ViT training scheme similar to structural re-parameterization? In this paper, we affirmatively answer these questions, with a new general training strategy for ViTs. Specifically, we decouple the training and inference phases of ViTs. During training, we replace some Feed-Forward Networks (FFNs) of the ViT with specially designed, more efficient MoEs that assign tokens to experts by random uniform partition, and perform Experts Weights Averaging (EWA) on these MoEs at the end of each iteration. After training, we convert each MoE into an FFN by averaging the experts, transforming the model back into original ViT for inference. We further provide a theoretical analysis to show why and how it works. Comprehensive experiments across various 2D and 3D visual tasks, ViT architectures, and datasets validate the effectiveness and generalizability of the proposed training scheme. Besides, our training scheme can also be applied to improve performance when fine-tuning ViTs. Lastly, but equally important, the proposed EWA technique can significantly improve the effectiveness of naive MoE in various 2D visual small datasets and 3D visual tasks.

  • 7 authors
·
Aug 11, 2023

Scalable and Efficient MoE Training for Multitask Multilingual Models

The Mixture of Experts (MoE) models are an emerging class of sparsely activated deep learning models that have sublinear compute costs with respect to their parameters. In contrast with dense models, the sparse architecture of MoE offers opportunities for drastically growing model size with significant accuracy gain while consuming much lower compute budget. However, supporting large scale MoE training also has its own set of system and modeling challenges. To overcome the challenges and embrace the opportunities of MoE, we first develop a system capable of scaling MoE models efficiently to trillions of parameters. It combines multi-dimensional parallelism and heterogeneous memory technologies harmoniously with MoE to empower 8x larger models on the same hardware compared with existing work. Besides boosting system efficiency, we also present new training methods to improve MoE sample efficiency and leverage expert pruning strategy to improve inference time efficiency. By combining the efficient system and training methods, we are able to significantly scale up large multitask multilingual models for language generation which results in a great improvement in model accuracy. A model trained with 10 billion parameters on 50 languages can achieve state-of-the-art performance in Machine Translation (MT) and multilingual natural language generation tasks. The system support of efficient MoE training has been implemented and open-sourced with the DeepSpeed library.

  • 9 authors
·
Sep 21, 2021

LLaVA-MoLE: Sparse Mixture of LoRA Experts for Mitigating Data Conflicts in Instruction Finetuning MLLMs

Instruction finetuning on a variety of image-text instruction data is the key to obtaining a versatile Multimodal Large Language Model (MLLM), and different configurations of the instruction data can lead to finetuned models with different capabilities. However, we have discovered that data conflicts are inevitable when mixing instruction data from distinct domains, which can result in performance drops for tasks of a specific domain. To address this issue, we propose to apply an efficient Mixture of Experts (MoE) design, which is a sparse Mixture of LoRA Experts (MoLE) for instruction finetuning MLLMs. Within the Transformer layers, we extend the popular Low-Rank Adaption (LoRA) method by creating a set of LoRA experts specifically for the MLP layer, and route each token to the top-1 expert based on a routing function, allowing adaptive choices for tokens from different domains. Since the LoRA experts are sparsely activated, the training and inference cost are kept roughly constant compared to the original LoRA method. By replacing the plain-LoRA of LLaVA-1.5 with our MoE design, our final model is named LLaVA-MoLE. Extensive experiments proved that LLaVA-MoLE effectively mitigates the data conflict issue when mixing multiple distinct instruction datasets with various configurations, and achieves consistent performance gains over the strong plain-LoRA baselines. Most importantly, on the mixed datasets, LLaVA-MoLE can even outperform the plain-LoRA baseline trained with twice the samples.

  • 3 authors
·
Jan 29, 2024

Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture with Task-level Sparsity via Mixture-of-Experts

Computer vision researchers are embracing two promising paradigms: Vision Transformers (ViTs) and Multi-task Learning (MTL), which both show great performance but are computation-intensive, given the quadratic complexity of self-attention in ViT and the need to activate an entire large MTL model for one task. M^3ViT is the latest multi-task ViT model that introduces mixture-of-experts (MoE), where only a small portion of subnetworks ("experts") are sparsely and dynamically activated based on the current task. M^3ViT achieves better accuracy and over 80% computation reduction but leaves challenges for efficient deployment on FPGA. Our work, dubbed Edge-MoE, solves the challenges to introduce the first end-to-end FPGA accelerator for multi-task ViT with a collection of architectural innovations, including (1) a novel reordering mechanism for self-attention, which requires only constant bandwidth regardless of the target parallelism; (2) a fast single-pass softmax approximation; (3) an accurate and low-cost GELU approximation; (4) a unified and flexible computing unit that is shared by almost all computational layers to maximally reduce resource usage; and (5) uniquely for M^3ViT, a novel patch reordering method to eliminate memory access overhead. Edge-MoE achieves 2.24x and 4.90x better energy efficiency comparing with GPU and CPU, respectively. A real-time video demonstration is available online, along with our open-source code written using High-Level Synthesis.

  • 5 authors
·
May 29, 2023

M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task Learning with Model-Accelerator Co-design

Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly. However, when deploying MTL onto those real-world systems that are often resource-constrained or latency-sensitive, two prominent challenges arise: (i) during training, simultaneously optimizing all tasks is often difficult due to gradient conflicts across tasks; (ii) at inference, current MTL regimes have to activate nearly the entire model even to just execute a single task. Yet most real systems demand only one or two tasks at each moment, and switch between tasks as needed: therefore such all tasks activated inference is also highly inefficient and non-scalable. In this paper, we present a model-accelerator co-design framework to enable efficient on-device MTL. Our framework, dubbed M^3ViT, customizes mixture-of-experts (MoE) layers into a vision transformer (ViT) backbone for MTL, and sparsely activates task-specific experts during training. Then at inference with any task of interest, the same design allows for activating only the task-corresponding sparse expert pathway, instead of the full model. Our new model design is further enhanced by hardware-level innovations, in particular, a novel computation reordering scheme tailored for memory-constrained MTL that achieves zero-overhead switching between tasks and can scale to any number of experts. When executing single-task inference, M^{3}ViT achieves higher accuracies than encoder-focused MTL methods, while significantly reducing 88% inference FLOPs. When implemented on a hardware platform of one Xilinx ZCU104 FPGA, our co-design framework reduces the memory requirement by 2.4 times, while achieving energy efficiency up to 9.23 times higher than a comparable FPGA baseline. Code is available at: https://github.com/VITA-Group/M3ViT.

  • 9 authors
·
Oct 26, 2022

Understanding and Harnessing Sparsity in Unified Multimodal Models

Large multimodal models have achieved remarkable progress in both understanding and generation. Recent efforts pursue unified multimodal models that integrate heterogeneous components to support both capabilities within a single framework. However, such unification introduces inference inefficiencies, e.g., specific tasks or samples may not require the full knowledge or capacity of the unified model. Yet, a systematic understanding of how these inefficiencies manifest across different components remains limited. In this work, we first conduct a systematic analysis of unified multimodal model components using training-free pruning as a probing methodology, considering both depth pruning and width reduction. Our study reveals that the understanding component exhibits notable compressibility in both understanding and generation tasks, which is more pronounced in the latter. In contrast, the generation components are highly sensitive to compression, with performance deteriorating sharply even under moderate compression ratios. To address this limitation, we propose the Mixture-of-Experts (MoE) Adaptation, inspired by the dynamic activation patterns observed across different samples. This approach partitions the generation module into multiple experts and enables sparse activation to restore generation quality. We validate the effectiveness of sparse activation through expert-frozen tuning and further demonstrate that a fully trainable adaptation delivers additional gains. As a result, the adapted BAGEL model achieves performance comparable to the full model while activating only about half of its parameters. The code is released at https://github.com/Shwai-He/SparseUnifiedModel{this link}.

Efficiently Editing Mixture-of-Experts Models with Compressed Experts

Mixture-of-Experts (MoE) models have become a key approach for scaling large language models efficiently by activating only a subset of experts during training and inference. Typically, the number of activated experts presents a trade-off: fewer experts reduce computational costs, while more experts improve performance. Recent studies reveal that not all activated experts contribute equally to model performance, with some providing minimal utility, particularly when finetuning pretrained MoE models for specialized downstream tasks. The co-existence of significant and redundant parameters in experts provides us an opportunity to reduce the number of activated experts while maintaining model performance. In this work, we propose the concept of compressed experts, lightweight modules that serve as compact representations of full experts. Our approach preserves the most important experts while replacing other auxiliary activated experts with compressed experts. The reduction of active parameters significantly lowers inference costs while achieving comparable performance. Extensive experiments on models including Phi-MoE and OLMoE demonstrate that compressed experts recover over 90% of full expert performance across various tasks while reducing more than 30% active parameters and saving 20% in inference costs. This approach enables efficient deployment of MoE models in resource-constrained settings and facilitates scaling to larger models with manageable overhead. Our code is available at https://github.com/yifei-he/Compressed-Experts.

  • 4 authors
·
Mar 1

Domain-Specific Pruning of Large Mixture-of-Experts Models with Few-shot Demonstrations

Mixture-of-Experts (MoE) models achieve a favorable trade-off between performance and inference efficiency by activating only a subset of experts. However, the memory overhead of storing all experts remains a major limitation, especially in large-scale MoE models such as DeepSeek-R1(671B). In this study, we investigate domain specialization and expert redundancy in large-scale MoE models and uncover a consistent behavior we term few-shot expert localization, with only a few in-domain demonstrations, the model consistently activates a sparse and stable subset of experts on tasks within the same domain. Building on this observation, we propose a simple yet effective pruning framework, EASY-EP, that leverages a few domain-specific demonstrations to identify and retain only the most relevant experts. EASY-EP comprises two key components: output-aware expert importance assessment and expert-level token contribution estimation. The former evaluates the importance of each expert for the current token by considering the gating scores and L2 norm of the outputs of activated experts, while the latter assesses the contribution of tokens based on representation similarities before and after routed experts. Experiments on DeepSeek-R1 and DeepSeek-V3-0324 show that our method can achieve comparable performances and 2.99times throughput under the same memory budget with full model with only half the experts.

  • 7 authors
·
Apr 9

Unchosen Experts Can Contribute Too: Unleashing MoE Models' Power by Self-Contrast

Mixture-of-Experts (MoE) has emerged as a prominent architecture for scaling model size while maintaining computational efficiency. In MoE, each token in the input sequence activates a different subset of experts determined by a routing mechanism. However, the unchosen experts in MoE models do not contribute to the output, potentially leading to underutilization of the model's capacity. In this work, we first conduct exploratory studies to demonstrate that increasing the number of activated experts does not necessarily improve and can even degrade the output quality. Then, we show that output distributions from an MoE model using different routing strategies substantially differ, indicating that different experts do not always act synergistically. Motivated by these findings, we propose Self-Contrast Mixture-of-Experts (SCMoE), a training-free strategy that utilizes unchosen experts in a self-contrast manner during inference. In SCMoE, the next-token probabilities are determined by contrasting the outputs from strong and weak activation using the same MoE model. Our method is conceptually simple and computationally lightweight, as it incurs minimal latency compared to greedy decoding. Experiments on several benchmarks (GSM8K, StrategyQA, MBPP and HumanEval) demonstrate that SCMoE can consistently enhance Mixtral 8x7B's reasoning capability across various domains. For example, it improves the accuracy on GSM8K from 61.79 to 66.94. Moreover, combining SCMoE with self-consistency yields additional gains, increasing major@20 accuracy from 75.59 to 78.31.

  • 9 authors
·
May 23, 2024

WINA: Weight Informed Neuron Activation for Accelerating Large Language Model Inference

The growing computational demands of large language models (LLMs) make efficient inference and activation strategies increasingly critical. While recent approaches, such as Mixture-of-Experts (MoE), leverage selective activation but require specialized training, training-free sparse activation methods offer broader applicability and superior resource efficiency through their plug-and-play design. However, many existing methods rely solely on hidden state magnitudes to determine activation, resulting in high approximation errors and suboptimal inference accuracy. To address these limitations, we propose WINA (Weight Informed Neuron Activation), a novel, simple, and training-free sparse activation framework that jointly considers hidden state magnitudes and the column-wise ell_2-norms of weight matrices. We show that this leads to a sparsification strategy that obtains optimal approximation error bounds with theoretical guarantees tighter than existing techniques. Empirically, WINA also outperforms state-of-the-art methods (e.g., TEAL) by up to 2.94% in average performance at the same sparsity levels, across a diverse set of LLM architectures and datasets. These results position WINA as a new performance frontier for training-free sparse activation in LLM inference, advancing training-free sparse activation methods and setting a robust baseline for efficient inference. The source code is available at https://github.com/microsoft/wina.

  • 7 authors
·
May 25 2

Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design

The proliferation of large language models (LLMs) has led to the adoption of Mixture-of-Experts (MoE) architectures that dynamically leverage specialized subnetworks for improved efficiency and performance. Despite their benefits, MoE models face significant challenges during inference, including inefficient memory management and suboptimal batching, due to misaligned design choices between the model architecture and the system policies. Furthermore, the conventional approach of training MoEs from scratch is increasingly prohibitive in terms of cost. In this paper, we propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models (in contrast to "upcycling" generalist MoEs), avoiding the high costs of ground-up training. Our approach employs activation sparsity to extract experts. To compose experts, we examine the widely-adopted layer-wise router design and show its redundancy, and thus we introduce the pre-gating router decoupled from the MoE backbone that facilitates system-friendly pre-computing and lookahead scheduling, enhancing expert-aware batching and caching. Our codesign therefore addresses critical gaps on both the algorithmic and system fronts, establishing a scalable and efficient alternative for LLM inference in resource-constrained settings. Read-ME outperforms other popular open-source dense models of similar scales, achieving improvements of up to 10.1% on MMLU, and improving mean end-to-end latency up to 6.1%. Codes are available at: https://github.com/VITA-Group/READ-ME.

  • 7 authors
·
Oct 24, 2024 2

QuantMoE-Bench: Examining Post-Training Quantization for Mixture-of-Experts

Mixture-of-Experts (MoE) is a promising way to scale up the learning capacity of large language models. It increases the number of parameters while keeping FLOPs nearly constant during inference through sparse activation. Yet, it still suffers from significant memory overheads due to the vast parameter size, necessitating model compression techniques. Post-training quantization offers a powerful approach for model compression. Existing methods adopt a fixed quantization precision for the entire MoE model. This rigid setup can lead to suboptimal performance, without considering the inherent sparse structure. For example, MoE's sparse routing mechanism leads to different activation patterns, where shared experts are accessed by all tokens while token-conditioned experts are selectively activated. This activation disparity suggests different quantization requirements, with consistently activated shared experts potentially needing higher precision to maintain model quality. In this paper, we study a fine-grained precision setup for MoE quantization. We explore MoE structure-aware quantization heuristics, ranging from coarse (e.g., MoE layers) to fine granularity (e.g., linear layers). Our investigations reveal critical principles, where different MoE structures require varying numbers of bits for effective quantization. Conclusions are supported by extensive benchmarking across two representative MoE models and six tasks including commonsense reasoning and natural language understanding. We further show that an MoE quantized in a fined-grained mixed precision achieved state-of-the-art 65.35% performance on average compared to the baseline 64.30% (i.e., GPTQ). Moreover, based on the findings, we introduce novel data-driven techniques for optimizing bit allocation in MoE quantization, including the outlier-aware linear layer scorer and MoE block importance predictor.

  • 5 authors
·
Jun 12, 2024

Is Temperature Sample Efficient for Softmax Gaussian Mixture of Experts?

Dense-to-sparse gating mixture of experts (MoE) has recently become an effective alternative to a well-known sparse MoE. Rather than fixing the number of activated experts as in the latter model, which could limit the investigation of potential experts, the former model utilizes the temperature to control the softmax weight distribution and the sparsity of the MoE during training in order to stabilize the expert specialization. Nevertheless, while there are previous attempts to theoretically comprehend the sparse MoE, a comprehensive analysis of the dense-to-sparse gating MoE has remained elusive. Therefore, we aim to explore the impacts of the dense-to-sparse gate on the maximum likelihood estimation under the Gaussian MoE in this paper. We demonstrate that due to interactions between the temperature and other model parameters via some partial differential equations, the convergence rates of parameter estimations are slower than any polynomial rates, and could be as slow as O(1/log(n)), where n denotes the sample size. To address this issue, we propose using a novel activation dense-to-sparse gate, which routes the output of a linear layer to an activation function before delivering them to the softmax function. By imposing linearly independence conditions on the activation function and its derivatives, we show that the parameter estimation rates are significantly improved to polynomial rates.

  • 3 authors
·
Jan 24, 2024

STUN: Structured-Then-Unstructured Pruning for Scalable MoE Pruning

Mixture-of-experts (MoEs) have been adopted for reducing inference costs by sparsely activating experts in Large language models (LLMs). Despite this reduction, the massive number of experts in MoEs still makes them expensive to serve. In this paper, we study how to address this, by pruning MoEs. Among pruning methodologies, unstructured pruning has been known to achieve the highest performance for a given pruning ratio, compared to structured pruning, since the latter imposes constraints on the sparsification structure. This is intuitive, as the solution space of unstructured pruning subsumes that of structured pruning. However, our counterintuitive finding reveals that expert pruning, a form of structured pruning, can actually precede unstructured pruning to outperform unstructured-only pruning. As existing expert pruning, requiring O(k^n{n}) forward passes for n experts, cannot scale for recent MoEs, we propose a scalable alternative with O(1) complexity, yet outperforming the more expensive methods. The key idea is leveraging a latent structure between experts, based on behavior similarity, such that the greedy decision of whether to prune closely captures the joint pruning effect. Ours is highly effective -- for Snowflake Arctic, a 480B-sized MoE with 128 experts, our method needs only one H100 and two hours to achieve nearly no loss in performance with 40% sparsity, even in generative tasks such as GSM8K, where state-of-the-art unstructured pruning fails to. The code will be made publicly available.

  • 6 authors
·
Sep 10, 2024

MC#: Mixture Compressor for Mixture-of-Experts Large Models

Mixture-of-Experts (MoE) effectively scales large language models (LLMs) and vision-language models (VLMs) by increasing capacity through sparse activation. However, preloading all experts into memory and activating multiple experts per input introduces significant computational and memory overhead, making the expert module a major contributor to model size and inference cost. To address this, we propose MC# (Mixture-Compressor-sharp), a framework that combines static quantization and dynamic expert pruning by leveraging the significance of experts and tokens for aggressive compression of MoE-LLMs/VLMs. To reduce storage and loading costs, we introduce Pre-Loading Mixed-Precision Quantization (PMQ), which optimizes bit allocation via linear programming, balancing expert importance and quantization error for a Pareto-optimal trade-off between size and performance. To reduce runtime computation, Online Top-any Pruning (OTP) uses Gumbel-Softmax sampling to dynamically select a subset of experts per token, enabling fine-grained control over activation. By combining PMQ's static bit-width optimization with OTP's dynamic routing, MC# achieves extreme compression with minimal accuracy loss. On DeepSeek-VL2, MC# achieves a 6.2 times weight reduction at 2.57 average bits with only a 1.7% accuracy drop across five multimodal benchmarks. Additionally, OTP reduces expert activation over 20% with less than 1% performance degradation, demonstrating strong potential for efficient MoE-based model deployment.

  • 9 authors
·
Oct 12

COMET: Learning Cardinality Constrained Mixture of Experts with Trees and Local Search

The sparse Mixture-of-Experts (Sparse-MoE) framework efficiently scales up model capacity in various domains, such as natural language processing and vision. Sparse-MoEs select a subset of the "experts" (thus, only a portion of the overall network) for each input sample using a sparse, trainable gate. Existing sparse gates are prone to convergence and performance issues when training with first-order optimization methods. In this paper, we introduce two improvements to current MoE approaches. First, we propose a new sparse gate: COMET, which relies on a novel tree-based mechanism. COMET is differentiable, can exploit sparsity to speed up computation, and outperforms state-of-the-art gates. Second, due to the challenging combinatorial nature of sparse expert selection, first-order methods are typically prone to low-quality solutions. To deal with this challenge, we propose a novel, permutation-based local search method that can complement first-order methods in training any sparse gate, e.g., Hash routing, Top-k, DSelect-k, and COMET. We show that local search can help networks escape bad initializations or solutions. We performed large-scale experiments on various domains, including recommender systems, vision, and natural language processing. On standard vision and recommender systems benchmarks, COMET+ (COMET with local search) achieves up to 13% improvement in ROC AUC over popular gates, e.g., Hash routing and Top-k, and up to 9% over prior differentiable gates e.g., DSelect-k. When Top-k and Hash gates are combined with local search, we see up to 100times reduction in the budget needed for hyperparameter tuning. Moreover, for language modeling, our approach improves over the state-of-the-art MoEBERT model for distilling BERT on 5/7 GLUE benchmarks as well as SQuAD dataset.

  • 6 authors
·
Jun 5, 2023

Mixture of Experts Made Intrinsically Interpretable

Neurons in large language models often exhibit polysemanticity, simultaneously encoding multiple unrelated concepts and obscuring interpretability. Instead of relying on post-hoc methods, we present MoE-X, a Mixture-of-Experts (MoE) language model designed to be intrinsically interpretable. Our approach is motivated by the observation that, in language models, wider networks with sparse activations are more likely to capture interpretable factors. However, directly training such large sparse networks is computationally prohibitive. MoE architectures offer a scalable alternative by activating only a subset of experts for any given input, inherently aligning with interpretability objectives. In MoE-X, we establish this connection by rewriting the MoE layer as an equivalent sparse, large MLP. This approach enables efficient scaling of the hidden size while maintaining sparsity. To further enhance interpretability, we enforce sparse activation within each expert and redesign the routing mechanism to prioritize experts with the highest activation sparsity. These designs ensure that only the most salient features are routed and processed by the experts. We evaluate MoE-X on chess and natural language tasks, showing that it achieves performance comparable to dense models while significantly improving interpretability. MoE-X achieves a perplexity better than GPT-2, with interpretability surpassing even sparse autoencoder (SAE)-based approaches.

  • 7 authors
·
Mar 5 2

A Survey on Mixture of Experts

Large language models (LLMs) have garnered unprecedented advancements across diverse fields, ranging from natural language processing to computer vision and beyond. The prowess of LLMs is underpinned by their substantial model size, extensive and diverse datasets, and the vast computational power harnessed during training, all of which contribute to the emergent abilities of LLMs (e.g., in-context learning) that are not present in small models. Within this context, the mixture of experts (MoE) has emerged as an effective method for substantially scaling up model capacity with minimal computation overhead, gaining significant attention from academia and industry. Despite its growing prevalence, there lacks a systematic and comprehensive review of the literature on MoE. This survey seeks to bridge that gap, serving as an essential resource for researchers delving into the intricacies of MoE. We first briefly introduce the structure of the MoE layer, followed by proposing a new taxonomy of MoE. Next, we overview the core designs for various MoE models including both algorithmic and systemic aspects, alongside collections of available open-source implementations, hyperparameter configurations and empirical evaluations. Furthermore, we delineate the multifaceted applications of MoE in practice, and outline some potential directions for future research. To facilitate ongoing updates and the sharing of cutting-edge developments in MoE research, we have established a resource repository accessible at https://github.com/withinmiaov/A-Survey-on-Mixture-of-Experts.

  • 6 authors
·
Jun 26, 2024

Hecate: Unlocking Efficient Sparse Model Training via Fully Sharded Sparse Data Parallelism

Mixture-of-Experts (MoE) has emerged as a promising sparse paradigm for scaling up pre-trained models (PTMs) with remarkable cost-effectiveness. However, the dynamic nature of MoE leads to rapid fluctuations and imbalances in expert loads during training, resulting in significant straggler effects that hinder training performance when using expert parallelism (EP). Existing MoE training systems attempt to mitigate these effects through expert rearrangement strategies, but they face challenges in terms of memory efficiency and timeliness of rearrangement. This paper proposes Fully Sharded Sparse Data Parallelism (FSSDP), an innovative approach that tackles the parallelization of MoE layers and potential straggler effects caused by imbalanced expert loads from a new perspective. FSSDP fully shards the parameters and optimizer states of MoE layers across devices and sparsely materializes MoE parameters from scratch in each iteration with two sparse collectives SparseAllGather and SparseReduceScatter. We build Hecate, a high-performance MoE training system that incorporates FSSDP to fully unlock its potential. Hecate introduces heterogeneous sharding, sparse materialization, and re-materialization techniques to construct flexible and efficient expert placements with low memory and communication overhead. Our evaluation reveals that Hecate achieves up to 3.54x speedup compared over state-of-the-art MoE training systems and consistently demonstrates improvements across model architectures and hardware environments.

  • 11 authors
·
Feb 4

MC-MoE: Mixture Compressor for Mixture-of-Experts LLMs Gains More

Mixture-of-Experts large language models (MoE-LLMs) marks a significant step forward of language models, however, they encounter two critical challenges in practice: 1) expert parameters lead to considerable memory consumption and loading latency; and 2) the current activated experts are redundant, as many tokens may only require a single expert. Motivated by these issues, we investigate the MoE-LLMs and make two key observations: a) different experts exhibit varying behaviors on activation reconstruction error, routing scores, and activated frequencies, highlighting their differing importance, and b) not all tokens are equally important -- only a small subset is critical. Building on these insights, we propose MC-MoE, a training-free Mixture-Compressor for MoE-LLMs, which leverages the significance of both experts and tokens to achieve an extreme compression. First, to mitigate storage and loading overheads, we introduce Pre-Loading Mixed-Precision Quantization, which formulates the adaptive bit-width allocation as a Linear Programming problem, where the objective function balances multi-factors reflecting the importance of each expert. Additionally, we develop Online Dynamic Pruning, which identifies important tokens to retain and dynamically select activated experts for other tokens during inference to optimize efficiency while maintaining performance. Our MC-MoE integrates static quantization and dynamic pruning to collaboratively achieve extreme compression for MoE-LLMs with less accuracy loss, ensuring an optimal trade-off between performance and efficiency. Extensive experiments confirm the effectiveness of our approach. For instance, at 2.54 bits, MC-MoE compresses 76.6% of the model, with only a 3.8% average accuracy loss. During dynamic inference, we further reduce activated parameters by 15%, with a performance drop of less than 0.6%.

  • 9 authors
·
Oct 8, 2024

Beyond Standard MoE: Mixture of Latent Experts for Resource-Efficient Language Models

Mixture of Experts (MoE) has emerged as a pivotal architectural paradigm for efficient scaling of Large Language Models (LLMs), operating through selective activation of parameter subsets for each input token. Nevertheless, conventional MoE architectures encounter substantial challenges, including excessive memory utilization and communication overhead during training and inference, primarily attributable to the proliferation of expert modules. In this paper, we introduce Mixture of Latent Experts (MoLE), a novel parameterization methodology that facilitates the mapping of specific experts into a shared latent space. Specifically, all expert operations are systematically decomposed into two principal components: a shared projection into a lower-dimensional latent space, followed by expert-specific transformations with significantly reduced parametric complexity. This factorized approach substantially diminishes parameter count and computational requirements. Beyond the pretraining implementation of the MoLE architecture, we also establish a rigorous mathematical framework for transforming pre-trained MoE models into the MoLE architecture, characterizing the sufficient conditions for optimal factorization and developing a systematic two-phase algorithm for this conversion process. Our comprehensive theoretical analysis demonstrates that MoLE significantly enhances computational efficiency across multiple dimensions while preserving model representational capacity. Empirical evaluations corroborate our theoretical findings, confirming that MoLE achieves performance comparable to standard MoE implementations while substantially reducing resource requirements.

  • 7 authors
·
Mar 29

Harder Tasks Need More Experts: Dynamic Routing in MoE Models

In this paper, we introduce a novel dynamic expert selection framework for Mixture of Experts (MoE) models, aiming to enhance computational efficiency and model performance by adjusting the number of activated experts based on input difficulty. Unlike traditional MoE approaches that rely on fixed Top-K routing, which activates a predetermined number of experts regardless of the input's complexity, our method dynamically selects experts based on the confidence level in expert selection for each input. This allows for a more efficient utilization of computational resources, activating more experts for complex tasks requiring advanced reasoning and fewer for simpler tasks. Through extensive evaluations, our dynamic routing method demonstrates substantial improvements over conventional Top-2 routing across various benchmarks, achieving an average improvement of 0.7% with less than 90% activated parameters. Further analysis shows our model dispatches more experts to tasks requiring complex reasoning skills, like BBH, confirming its ability to dynamically allocate computational resources in alignment with the input's complexity. Our findings also highlight a variation in the number of experts needed across different layers of the transformer model, offering insights into the potential for designing heterogeneous MoE frameworks. The code and models are available at https://github.com/ZhenweiAn/Dynamic_MoE.

  • 11 authors
·
Mar 12, 2024

Towards Foundational Models for Dynamical System Reconstruction: Hierarchical Meta-Learning via Mixture of Experts

As foundational models reshape scientific discovery, a bottleneck persists in dynamical system reconstruction (DSR): the ability to learn across system hierarchies. Many meta-learning approaches have been applied successfully to single systems, but falter when confronted with sparse, loosely related datasets requiring multiple hierarchies to be learned. Mixture of Experts (MoE) offers a natural paradigm to address these challenges. Despite their potential, we demonstrate that naive MoEs are inadequate for the nuanced demands of hierarchical DSR, largely due to their gradient descent-based gating update mechanism which leads to slow updates and conflicted routing during training. To overcome this limitation, we introduce MixER: Mixture of Expert Reconstructors, a novel sparse top-1 MoE layer employing a custom gating update algorithm based on K-means and least squares. Extensive experiments validate MixER's capabilities, demonstrating efficient training and scalability to systems of up to ten parametric ordinary differential equations. However, our layer underperforms state-of-the-art meta-learners in high-data regimes, particularly when each expert is constrained to process only a fraction of a dataset composed of highly related data points. Further analysis with synthetic and neuroscientific time series suggests that the quality of the contextual representations generated by MixER is closely linked to the presence of hierarchical structure in the data.

  • 5 authors
·
Feb 7

Towards Greater Leverage: Scaling Laws for Efficient Mixture-of-Experts Language Models

Mixture-of-Experts (MoE) has become a dominant architecture for scaling Large Language Models (LLMs) efficiently by decoupling total parameters from computational cost. However, this decoupling creates a critical challenge: predicting the model capacity of a given MoE configurations (e.g., expert activation ratio and granularity) remains an unresolved problem. To address this gap, we introduce Efficiency Leverage (EL), a metric quantifying the computational advantage of an MoE model over a dense equivalent. We conduct a large-scale empirical study, training over 300 models up to 28B parameters, to systematically investigate the relationship between MoE architectural configurations and EL. Our findings reveal that EL is primarily driven by the expert activation ratio and the total compute budget, both following predictable power laws, while expert granularity acts as a non-linear modulator with a clear optimal range. We integrate these discoveries into a unified scaling law that accurately predicts the EL of an MoE architecture based on its configuration. To validate our derived scaling laws, we designed and trained Ling-mini-beta, a pilot model for Ling-2.0 series with only 0.85B active parameters, alongside a 6.1B dense model for comparison. When trained on an identical 1T high-quality token dataset, Ling-mini-beta matched the performance of the 6.1B dense model while consuming over 7x fewer computational resources, thereby confirming the accuracy of our scaling laws. This work provides a principled and empirically-grounded foundation for the scaling of efficient MoE models.

  • 6 authors
·
Jul 23

Rewiring Experts on the Fly:Continuous Rerouting for Better Online Adaptation in Mixture-of-Expert models

Mixture-of-Experts (MoE) models achieve efficient scaling through sparse expert activation, but often suffer from suboptimal routing decisions due to distribution shifts in deployment. While existing test-time adaptation methods could potentially address these issues, they primarily focus on dense models and require access to external data, limiting their practical applicability to MoE architectures. However, we find that, instead of relying on reference data, we can optimize MoE expert selection on-the-fly based only on input context. As such, we propose a data-free, online test-time framework that continuously adapts MoE routing decisions during text generation without external supervision or data. Our method cycles between two phases: During the prefill stage, and later in regular intervals, we optimize the routing decisions of the model using self-supervision based on the already generated sequence. Then, we generate text as normal, maintaining the modified router until the next adaption. We implement this through lightweight additive vectors that only update router logits in selected layers, maintaining computational efficiency while preventing over-adaptation. The experimental results show consistent performance gains on challenging reasoning tasks while maintaining robustness to context shifts. For example, our method achieves a 5.5\% improvement on HumanEval with OLMoE. Furthermore, owing to its plug-and-play property, our method naturally complements existing test-time scaling techniques, e.g., achieving 6\% average gains when incorporated with self-consistency on DeepSeek-V2-Lite.

  • 6 authors
·
Oct 16 3

Mixture of Tunable Experts -- Behavior Modification of DeepSeek-R1 at Inference Time

We present the Mixture-of-Tunable-Experts (MoTE), a method that extends the Mixture-of-Experts architecture of Large Language Models (LLMs). Without additional training, MoTE enables meaningful and focused behavior changes in LLMs on-the-fly during inference time. By analyzing the digital LLM brain of DeepSeek-R1 using a technique we dub 'functional Token Resonance Imaging' (fTRI) -- inspired by fMRI and using prompts designed to elicit specific behavior (e.g., 'What happened {time}{place}?') -- we empirically identify distinctive experts associated with behaviors like refusal responses. Using MoTE we are able to intervene and control such specific behavior. We switched off the top 10 most refusal-relevant experts (0.07% of R1's 14,848 routed experts), achieving a 52% refusal reduction on sensitive reference prompts without performance degradation on MT-Bench. Random expert deactivation resulted in smaller behavioral shifts with increased noise, whereas forced expert activation led to significantly higher refusal rates. Our approach shares similarities with sparse autoencoders (SAEs) in terms of explainability and steerability. Unlike SAEs, MoTE does not require large training efforts, as within MoEs with a vast number of experts, specialization already emerged naturally during pretraining. Our findings suggest that significant functional mechanisms in Mixture-of-Experts architectures can at least partially be localized in a small number of specific experts, rather than being distributed throughout the model's weights. Expert subgroups can be tuned to trigger significant behavior variations, providing insights into the inner workings of LLMs.

  • 6 authors
·
Feb 16 2

Routing Matters in MoE: Scaling Diffusion Transformers with Explicit Routing Guidance

Mixture-of-Experts (MoE) has emerged as a powerful paradigm for scaling model capacity while preserving computational efficiency. Despite its notable success in large language models (LLMs), existing attempts to apply MoE to Diffusion Transformers (DiTs) have yielded limited gains. We attribute this gap to fundamental differences between language and visual tokens. Language tokens are semantically dense with pronounced inter-token variation, while visual tokens exhibit spatial redundancy and functional heterogeneity, hindering expert specialization in vision MoE. To this end, we present ProMoE, an MoE framework featuring a two-step router with explicit routing guidance that promotes expert specialization. Specifically, this guidance encourages the router to partition image tokens into conditional and unconditional sets via conditional routing according to their functional roles, and refine the assignments of conditional image tokens through prototypical routing with learnable prototypes based on semantic content. Moreover, the similarity-based expert allocation in latent space enabled by prototypical routing offers a natural mechanism for incorporating explicit semantic guidance, and we validate that such guidance is crucial for vision MoE. Building on this, we propose a routing contrastive loss that explicitly enhances the prototypical routing process, promoting intra-expert coherence and inter-expert diversity. Extensive experiments on ImageNet benchmark demonstrate that ProMoE surpasses state-of-the-art methods under both Rectified Flow and DDPM training objectives. Code and models will be made publicly available.

Optimal Sparsity of Mixture-of-Experts Language Models for Reasoning Tasks

Empirical scaling laws have driven the evolution of large language models (LLMs), yet their coefficients shift whenever the model architecture or data pipeline changes. Mixture-of-Experts (MoE) models, now standard in state-of-the-art systems, introduce a new sparsity dimension that current dense-model frontiers overlook. We investigate how MoE sparsity influences two distinct capability regimes: memorization and reasoning. We train families of MoE Transformers that systematically vary total parameters, active parameters, and top-k routing while holding the compute budget fixed. For every model we record pre-training loss, downstream task loss, and task accuracy, allowing us to separate the train-test generalization gap from the loss-accuracy gap. Memorization benchmarks improve monotonically with total parameters, mirroring training loss. By contrast, reasoning performance saturates and can even regress despite continued gains in both total parameters and training loss. Altering top-k alone has little effect when active parameters are constant, and classic hyperparameters such as learning rate and initialization modulate the generalization gap in the same direction as sparsity. Neither post-training reinforcement learning (GRPO) nor extra test-time compute rescues the reasoning deficit of overly sparse models. Our model checkpoints, code and logs are open-source at https://github.com/rioyokotalab/optimal-sparsity.

  • 7 authors
·
Aug 26 2