new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Stable Mean Teacher for Semi-supervised Video Action Detection

In this work, we focus on semi-supervised learning for video action detection. Video action detection requires spatiotemporal localization in addition to classification, and a limited amount of labels makes the model prone to unreliable predictions. We present Stable Mean Teacher, a simple end-to-end teacher-based framework that benefits from improved and temporally consistent pseudo labels. It relies on a novel Error Recovery (EoR) module, which learns from students' mistakes on labeled samples and transfers this knowledge to the teacher to improve pseudo labels for unlabeled samples. Moreover, existing spatiotemporal losses do not take temporal coherency into account and are prone to temporal inconsistencies. To address this, we present Difference of Pixels (DoP), a simple and novel constraint focused on temporal consistency, leading to coherent temporal detections. We evaluate our approach on four different spatiotemporal detection benchmarks: UCF101-24, JHMDB21, AVA, and YouTube-VOS. Our approach outperforms the supervised baselines for action detection by an average margin of 23.5% on UCF101-24, 16% on JHMDB21, and 3.3% on AVA. Using merely 10% and 20% of data, it provides competitive performance compared to the supervised baseline trained on 100% annotations on UCF101-24 and JHMDB21, respectively. We further evaluate its effectiveness on AVA for scaling to large-scale datasets and YouTube-VOS for video object segmentation, demonstrating its generalization capability to other tasks in the video domain. Code and models are publicly available.

  • 3 authors
·
Dec 9, 2024

Semi-supervised Active Learning for Video Action Detection

In this work, we focus on label efficient learning for video action detection. We develop a novel semi-supervised active learning approach which utilizes both labeled as well as unlabeled data along with informative sample selection for action detection. Video action detection requires spatio-temporal localization along with classification, which poses several challenges for both active learning informative sample selection as well as semi-supervised learning pseudo label generation. First, we propose NoiseAug, a simple augmentation strategy which effectively selects informative samples for video action detection. Next, we propose fft-attention, a novel technique based on high-pass filtering which enables effective utilization of pseudo label for SSL in video action detection by emphasizing on relevant activity region within a video. We evaluate the proposed approach on three different benchmark datasets, UCF-101-24, JHMDB-21, and Youtube-VOS. First, we demonstrate its effectiveness on video action detection where the proposed approach outperforms prior works in semi-supervised and weakly-supervised learning along with several baseline approaches in both UCF101-24 and JHMDB-21. Next, we also show its effectiveness on Youtube-VOS for video object segmentation demonstrating its generalization capability for other dense prediction tasks in videos. The code and models is publicly available at: https://github.com/AKASH2907/semi-sup-active-learning.

  • 5 authors
·
Dec 12, 2023

End-to-End Semi-Supervised Learning for Video Action Detection

In this work, we focus on semi-supervised learning for video action detection which utilizes both labeled as well as unlabeled data. We propose a simple end-to-end consistency based approach which effectively utilizes the unlabeled data. Video action detection requires both, action class prediction as well as a spatio-temporal localization of actions. Therefore, we investigate two types of constraints, classification consistency, and spatio-temporal consistency. The presence of predominant background and static regions in a video makes it challenging to utilize spatio-temporal consistency for action detection. To address this, we propose two novel regularization constraints for spatio-temporal consistency; 1) temporal coherency, and 2) gradient smoothness. Both these aspects exploit the temporal continuity of action in videos and are found to be effective for utilizing unlabeled videos for action detection. We demonstrate the effectiveness of the proposed approach on two different action detection benchmark datasets, UCF101-24 and JHMDB-21. In addition, we also show the effectiveness of the proposed approach for video object segmentation on the Youtube-VOS which demonstrates its generalization capability The proposed approach achieves competitive performance by using merely 20% of annotations on UCF101-24 when compared with recent fully supervised methods. On UCF101-24, it improves the score by +8.9% and +11% at 0.5 f-mAP and v-mAP respectively, compared to supervised approach.

  • 2 authors
·
Mar 8, 2022

Efficient Video Action Detection with Token Dropout and Context Refinement

Streaming video clips with large-scale video tokens impede vision transformers (ViTs) for efficient recognition, especially in video action detection where sufficient spatiotemporal representations are required for precise actor identification. In this work, we propose an end-to-end framework for efficient video action detection (EVAD) based on vanilla ViTs. Our EVAD consists of two specialized designs for video action detection. First, we propose a spatiotemporal token dropout from a keyframe-centric perspective. In a video clip, we maintain all tokens from its keyframe, preserve tokens relevant to actor motions from other frames, and drop out the remaining tokens in this clip. Second, we refine scene context by leveraging remaining tokens for better recognizing actor identities. The region of interest (RoI) in our action detector is expanded into temporal domain. The captured spatiotemporal actor identity representations are refined via scene context in a decoder with the attention mechanism. These two designs make our EVAD efficient while maintaining accuracy, which is validated on three benchmark datasets (i.e., AVA, UCF101-24, JHMDB). Compared to the vanilla ViT backbone, our EVAD reduces the overall GFLOPs by 43% and improves real-time inference speed by 40% with no performance degradation. Moreover, even at similar computational costs, our EVAD can improve the performance by 1.1 mAP with higher resolution inputs. Code is available at https://github.com/MCG-NJU/EVAD.

  • 5 authors
·
Apr 17, 2023

On Occlusions in Video Action Detection: Benchmark Datasets And Training Recipes

This paper explores the impact of occlusions in video action detection. We facilitate this study by introducing five new benchmark datasets namely O-UCF and O-JHMDB consisting of synthetically controlled static/dynamic occlusions, OVIS-UCF and OVIS-JHMDB consisting of occlusions with realistic motions and Real-OUCF for occlusions in realistic-world scenarios. We formally confirm an intuitive expectation: existing models suffer a lot as occlusion severity is increased and exhibit different behaviours when occluders are static vs when they are moving. We discover several intriguing phenomenon emerging in neural nets: 1) transformers can naturally outperform CNN models which might have even used occlusion as a form of data augmentation during training 2) incorporating symbolic-components like capsules to such backbones allows them to bind to occluders never even seen during training and 3) Islands of agreement can emerge in realistic images/videos without instance-level supervision, distillation or contrastive-based objectives2(eg. video-textual training). Such emergent properties allow us to derive simple yet effective training recipes which lead to robust occlusion models inductively satisfying the first two stages of the binding mechanism (grouping/segregation). Models leveraging these recipes outperform existing video action-detectors under occlusion by 32.3% on O-UCF, 32.7% on O-JHMDB & 2.6% on Real-OUCF in terms of the vMAP metric. The code for this work has been released at https://github.com/rajatmodi62/OccludedActionBenchmark.

  • 3 authors
·
Oct 25, 2024

No Time to Waste: Squeeze Time into Channel for Mobile Video Understanding

Current architectures for video understanding mainly build upon 3D convolutional blocks or 2D convolutions with additional operations for temporal modeling. However, these methods all regard the temporal axis as a separate dimension of the video sequence, which requires large computation and memory budgets and thus limits their usage on mobile devices. In this paper, we propose to squeeze the time axis of a video sequence into the channel dimension and present a lightweight video recognition network, term as SqueezeTime, for mobile video understanding. To enhance the temporal modeling capability of the proposed network, we design a Channel-Time Learning (CTL) Block to capture temporal dynamics of the sequence. This module has two complementary branches, in which one branch is for temporal importance learning and another branch with temporal position restoring capability is to enhance inter-temporal object modeling ability. The proposed SqueezeTime is much lightweight and fast with high accuracies for mobile video understanding. Extensive experiments on various video recognition and action detection benchmarks, i.e., Kinetics400, Kinetics600, HMDB51, AVA2.1 and THUMOS14, demonstrate the superiority of our model. For example, our SqueezeTime achieves +1.2% accuracy and +80% GPU throughput gain on Kinetics400 than prior methods. Codes are publicly available at https://github.com/xinghaochen/SqueezeTime and https://github.com/mindspore-lab/models/tree/master/research/huawei-noah/SqueezeTime.

  • 5 authors
·
May 14, 2024

Ego-Only: Egocentric Action Detection without Exocentric Transferring

We present Ego-Only, the first approach that enables state-of-the-art action detection on egocentric (first-person) videos without any form of exocentric (third-person) transferring. Despite the content and appearance gap separating the two domains, large-scale exocentric transferring has been the default choice for egocentric action detection. This is because prior works found that egocentric models are difficult to train from scratch and that transferring from exocentric representations leads to improved accuracy. However, in this paper, we revisit this common belief. Motivated by the large gap separating the two domains, we propose a strategy that enables effective training of egocentric models without exocentric transferring. Our Ego-Only approach is simple. It trains the video representation with a masked autoencoder finetuned for temporal segmentation. The learned features are then fed to an off-the-shelf temporal action localization method to detect actions. We find that this renders exocentric transferring unnecessary by showing remarkably strong results achieved by this simple Ego-Only approach on three established egocentric video datasets: Ego4D, EPIC-Kitchens-100, and Charades-Ego. On both action detection and action recognition, Ego-Only outperforms previous best exocentric transferring methods that use orders of magnitude more labels. Ego-Only sets new state-of-the-art results on these datasets and benchmarks without exocentric data.

  • 3 authors
·
Jan 3, 2023

Class Semantics-based Attention for Action Detection

Action localization networks are often structured as a feature encoder sub-network and a localization sub-network, where the feature encoder learns to transform an input video to features that are useful for the localization sub-network to generate reliable action proposals. While some of the encoded features may be more useful for generating action proposals, prior action localization approaches do not include any attention mechanism that enables the localization sub-network to attend more to the more important features. In this paper, we propose a novel attention mechanism, the Class Semantics-based Attention (CSA), that learns from the temporal distribution of semantics of action classes present in an input video to find the importance scores of the encoded features, which are used to provide attention to the more useful encoded features. We demonstrate on two popular action detection datasets that incorporating our novel attention mechanism provides considerable performance gains on competitive action detection models (e.g., around 6.2% improvement over BMN action detection baseline to obtain 47.5% mAP on the THUMOS-14 dataset), and a new state-of-the-art of 36.25% mAP on the ActivityNet v1.3 dataset. Further, the CSA localization model family which includes BMN-CSA, was part of the second-placed submission at the 2021 ActivityNet action localization challenge. Our attention mechanism outperforms prior self-attention modules such as the squeeze-and-excitation in action detection task. We also observe that our attention mechanism is complementary to such self-attention modules in that performance improvements are seen when both are used together.

  • 6 authors
·
Sep 6, 2021

ACT360: An Efficient 360-Degree Action Detection and Summarization Framework for Mission-Critical Training and Debriefing

Effective training and debriefing are critical in high-stakes, mission-critical environments such as disaster response, military simulations, and industrial safety, where precision and minimizing errors are paramount. The traditional post-training analysis relies on manually reviewing 2D videos, a time-consuming process that lacks comprehensive situational awareness. To address these limitations, we introduce ACT360, a system that leverages 360-degree videos and machine learning for automated action detection and structured debriefing. ACT360 integrates 360YOWO, an enhanced You Only Watch Once (YOWO) model with spatial attention and equirectangular-aware convolution (EAC) to mitigate panoramic video distortions. To enable deployment in resource-constrained environments, we apply quantization and model pruning, reducing the model size by 74% while maintaining robust accuracy (mAP drop of only 1.5%, from 0.865 to 0.850) and improving inference speed. We validate our approach on a publicly available dataset of 55 labeled 360-degree videos covering seven key operational actions, recorded across various real-world training sessions and environmental conditions. Additionally, ACT360 integrates 360AIE (Action Insight Explorer), a web-based interface for automatic action detection, retrieval, and textual summarization using large language models (LLMs), significantly enhancing post-incident analysis efficiency. ACT360 serves as a generalized framework for mission-critical debriefing, incorporating EAC, spatial attention, summarization, and model optimization. These innovations apply to any training environment requiring lightweight action detection and structured post-exercise analysis.

  • 2 authors
·
Mar 17

MultiSports: A Multi-Person Video Dataset of Spatio-Temporally Localized Sports Actions

Spatio-temporal action detection is an important and challenging problem in video understanding. The existing action detection benchmarks are limited in aspects of small numbers of instances in a trimmed video or low-level atomic actions. This paper aims to present a new multi-person dataset of spatio-temporal localized sports actions, coined as MultiSports. We first analyze the important ingredients of constructing a realistic and challenging dataset for spatio-temporal action detection by proposing three criteria: (1) multi-person scenes and motion dependent identification, (2) with well-defined boundaries, (3) relatively fine-grained classes of high complexity. Based on these guide-lines, we build the dataset of MultiSports v1.0 by selecting 4 sports classes, collecting 3200 video clips, and annotating 37701 action instances with 902k bounding boxes. Our datasets are characterized with important properties of high diversity, dense annotation, and high quality. Our Multi-Sports, with its realistic setting and detailed annotations, exposes the intrinsic challenges of spatio-temporal action detection. To benchmark this, we adapt several baseline methods to our dataset and give an in-depth analysis on the action detection results in our dataset. We hope our MultiSports can serve as a standard benchmark for spatio-temporal action detection in the future. Our dataset website is at https://deeperaction.github.io/multisports/.

  • 6 authors
·
May 16, 2021

Boundary-Denoising for Video Activity Localization

Video activity localization aims at understanding the semantic content in long untrimmed videos and retrieving actions of interest. The retrieved action with its start and end locations can be used for highlight generation, temporal action detection, etc. Unfortunately, learning the exact boundary location of activities is highly challenging because temporal activities are continuous in time, and there are often no clear-cut transitions between actions. Moreover, the definition of the start and end of events is subjective, which may confuse the model. To alleviate the boundary ambiguity, we propose to study the video activity localization problem from a denoising perspective. Specifically, we propose an encoder-decoder model named DenoiseLoc. During training, a set of action spans is randomly generated from the ground truth with a controlled noise scale. Then we attempt to reverse this process by boundary denoising, allowing the localizer to predict activities with precise boundaries and resulting in faster convergence speed. Experiments show that DenoiseLoc advances %in several video activity understanding tasks. For example, we observe a gain of +12.36% average mAP on QV-Highlights dataset and +1.64% [email protected] on THUMOS'14 dataset over the baseline. Moreover, DenoiseLoc achieves state-of-the-art performance on TACoS and MAD datasets, but with much fewer predictions compared to other current methods.

  • 6 authors
·
Apr 6, 2023

NurViD: A Large Expert-Level Video Database for Nursing Procedure Activity Understanding

The application of deep learning to nursing procedure activity understanding has the potential to greatly enhance the quality and safety of nurse-patient interactions. By utilizing the technique, we can facilitate training and education, improve quality control, and enable operational compliance monitoring. However, the development of automatic recognition systems in this field is currently hindered by the scarcity of appropriately labeled datasets. The existing video datasets pose several limitations: 1) these datasets are small-scale in size to support comprehensive investigations of nursing activity; 2) they primarily focus on single procedures, lacking expert-level annotations for various nursing procedures and action steps; and 3) they lack temporally localized annotations, which prevents the effective localization of targeted actions within longer video sequences. To mitigate these limitations, we propose NurViD, a large video dataset with expert-level annotation for nursing procedure activity understanding. NurViD consists of over 1.5k videos totaling 144 hours, making it approximately four times longer than the existing largest nursing activity datasets. Notably, it encompasses 51 distinct nursing procedures and 177 action steps, providing a much more comprehensive coverage compared to existing datasets that primarily focus on limited procedures. To evaluate the efficacy of current deep learning methods on nursing activity understanding, we establish three benchmarks on NurViD: procedure recognition on untrimmed videos, procedure and action recognition on trimmed videos, and action detection. Our benchmark and code will be available at https://github.com/minghu0830/NurViD-benchmark.

  • 10 authors
·
Oct 20, 2023

When do they StOP?: A First Step Towards Automatically Identifying Team Communication in the Operating Room

Purpose: Surgical performance depends not only on surgeons' technical skills but also on team communication within and across the different professional groups present during the operation. Therefore, automatically identifying team communication in the OR is crucial for patient safety and advances in the development of computer-assisted surgical workflow analysis and intra-operative support systems. To take the first step, we propose a new task of detecting communication briefings involving all OR team members, i.e. the team Time-out and the StOP?-protocol, by localizing their start and end times in video recordings of surgical operations. Methods: We generate an OR dataset of real surgeries, called Team-OR, with more than one hundred hours of surgical videos captured by the multi-view camera system in the OR. The dataset contains temporal annotations of 33 Time-out and 22 StOP?-protocol activities in total. We then propose a novel group activity detection approach, where we encode both scene context and action features, and use an efficient neural network model to output the results. Results: The experimental results on the Team-OR dataset show that our approach outperforms existing state-of-the-art temporal action detection approaches. It also demonstrates the lack of research on group activities in the OR, proving the significance of our dataset. Conclusion: We investigate the Team Time-Out and the StOP?-protocol in the OR, by presenting the first OR dataset with temporal annotations of group activities protocols, and introducing a novel group activity detection approach that outperforms existing approaches. Code is available at https://github.com/CAMMA-public/Team-OR.

  • 8 authors
·
Feb 12

ResFormer: Scaling ViTs with Multi-Resolution Training

Vision Transformers (ViTs) have achieved overwhelming success, yet they suffer from vulnerable resolution scalability, i.e., the performance drops drastically when presented with input resolutions that are unseen during training. We introduce, ResFormer, a framework that is built upon the seminal idea of multi-resolution training for improved performance on a wide spectrum of, mostly unseen, testing resolutions. In particular, ResFormer operates on replicated images of different resolutions and enforces a scale consistency loss to engage interactive information across different scales. More importantly, to alternate among varying resolutions effectively, especially novel ones in testing, we propose a global-local positional embedding strategy that changes smoothly conditioned on input sizes. We conduct extensive experiments for image classification on ImageNet. The results provide strong quantitative evidence that ResFormer has promising scaling abilities towards a wide range of resolutions. For instance, ResFormer-B-MR achieves a Top-1 accuracy of 75.86% and 81.72% when evaluated on relatively low and high resolutions respectively (i.e., 96 and 640), which are 48% and 7.49% better than DeiT-B. We also demonstrate, moreover, ResFormer is flexible and can be easily extended to semantic segmentation, object detection and video action recognition. Code is available at https://github.com/ruitian12/resformer.

  • 6 authors
·
Dec 1, 2022

Swin Transformer V2: Scaling Up Capacity and Resolution

Large-scale NLP models have been shown to significantly improve the performance on language tasks with no signs of saturation. They also demonstrate amazing few-shot capabilities like that of human beings. This paper aims to explore large-scale models in computer vision. We tackle three major issues in training and application of large vision models, including training instability, resolution gaps between pre-training and fine-tuning, and hunger on labelled data. Three main techniques are proposed: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) A log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) A self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. Through these techniques, this paper successfully trained a 3 billion-parameter Swin Transformer V2 model, which is the largest dense vision model to date, and makes it capable of training with images of up to 1,536times1,536 resolution. It set new performance records on 4 representative vision tasks, including ImageNet-V2 image classification, COCO object detection, ADE20K semantic segmentation, and Kinetics-400 video action classification. Also note our training is much more efficient than that in Google's billion-level visual models, which consumes 40 times less labelled data and 40 times less training time. Code is available at https://github.com/microsoft/Swin-Transformer.

  • 12 authors
·
Nov 18, 2021 1

Unfolding Videos Dynamics via Taylor Expansion

Taking inspiration from physical motion, we present a new self-supervised dynamics learning strategy for videos: Video Time-Differentiation for Instance Discrimination (ViDiDi). ViDiDi is a simple and data-efficient strategy, readily applicable to existing self-supervised video representation learning frameworks based on instance discrimination. At its core, ViDiDi observes different aspects of a video through various orders of temporal derivatives of its frame sequence. These derivatives, along with the original frames, support the Taylor series expansion of the underlying continuous dynamics at discrete times, where higher-order derivatives emphasize higher-order motion features. ViDiDi learns a single neural network that encodes a video and its temporal derivatives into consistent embeddings following a balanced alternating learning algorithm. By learning consistent representations for original frames and derivatives, the encoder is steered to emphasize motion features over static backgrounds and uncover the hidden dynamics in original frames. Hence, video representations are better separated by dynamic features. We integrate ViDiDi into existing instance discrimination frameworks (VICReg, BYOL, and SimCLR) for pretraining on UCF101 or Kinetics and test on standard benchmarks including video retrieval, action recognition, and action detection. The performances are enhanced by a significant margin without the need for large models or extensive datasets.

  • 6 authors
·
Sep 3, 2024

EVA: Exploring the Limits of Masked Visual Representation Learning at Scale

We launch EVA, a vision-centric foundation model to explore the limits of visual representation at scale using only publicly accessible data. EVA is a vanilla ViT pre-trained to reconstruct the masked out image-text aligned vision features conditioned on visible image patches. Via this pretext task, we can efficiently scale up EVA to one billion parameters, and sets new records on a broad range of representative vision downstream tasks, such as image recognition, video action recognition, object detection, instance segmentation and semantic segmentation without heavy supervised training. Moreover, we observe quantitative changes in scaling EVA result in qualitative changes in transfer learning performance that are not present in other models. For instance, EVA takes a great leap in the challenging large vocabulary instance segmentation task: our model achieves almost the same state-of-the-art performance on LVISv1.0 dataset with over a thousand categories and COCO dataset with only eighty categories. Beyond a pure vision encoder, EVA can also serve as a vision-centric, multi-modal pivot to connect images and text. We find initializing the vision tower of a giant CLIP from EVA can greatly stabilize the training and outperform the training from scratch counterpart with much fewer samples and less compute, providing a new direction for scaling up and accelerating the costly training of multi-modal foundation models. To facilitate future research, we release all the code and models at https://github.com/baaivision/EVA.

  • 9 authors
·
Nov 14, 2022

Florence: A New Foundation Model for Computer Vision

Automated visual understanding of our diverse and open world demands computer vision models to generalize well with minimal customization for specific tasks, similar to human vision. Computer vision foundation models, which are trained on diverse, large-scale dataset and can be adapted to a wide range of downstream tasks, are critical for this mission to solve real-world computer vision applications. While existing vision foundation models such as CLIP, ALIGN, and Wu Dao 2.0 focus mainly on mapping images and textual representations to a cross-modal shared representation, we introduce a new computer vision foundation model, Florence, to expand the representations from coarse (scene) to fine (object), from static (images) to dynamic (videos), and from RGB to multiple modalities (caption, depth). By incorporating universal visual-language representations from Web-scale image-text data, our Florence model can be easily adapted for various computer vision tasks, such as classification, retrieval, object detection, VQA, image caption, video retrieval and action recognition. Moreover, Florence demonstrates outstanding performance in many types of transfer learning: fully sampled fine-tuning, linear probing, few-shot transfer and zero-shot transfer for novel images and objects. All of these properties are critical for our vision foundation model to serve general purpose vision tasks. Florence achieves new state-of-the-art results in majority of 44 representative benchmarks, e.g., ImageNet-1K zero-shot classification with top-1 accuracy of 83.74 and the top-5 accuracy of 97.18, 62.4 mAP on COCO fine tuning, 80.36 on VQA, and 87.8 on Kinetics-600.

  • 23 authors
·
Nov 22, 2021

Video Relationship Detection Using Mixture of Experts

Machine comprehension of visual information from images and videos by neural networks faces two primary challenges. Firstly, there exists a computational and inference gap in connecting vision and language, making it difficult to accurately determine which object a given agent acts on and represent it through language. Secondly, classifiers trained by a single, monolithic neural network often lack stability and generalization. To overcome these challenges, we introduce MoE-VRD, a novel approach to visual relationship detection utilizing a mixture of experts. MoE-VRD identifies language triplets in the form of < subject, predicate, object> tuples to extract relationships from visual processing. Leveraging recent advancements in visual relationship detection, MoE-VRD addresses the requirement for action recognition in establishing relationships between subjects (acting) and objects (being acted upon). In contrast to single monolithic networks, MoE-VRD employs multiple small models as experts, whose outputs are aggregated. Each expert in MoE-VRD specializes in visual relationship learning and object tagging. By utilizing a sparsely-gated mixture of experts, MoE-VRD enables conditional computation and significantly enhances neural network capacity without increasing computational complexity. Our experimental results demonstrate that the conditional computation capabilities and scalability of the mixture-of-experts approach lead to superior performance in visual relationship detection compared to state-of-the-art methods.

  • 3 authors
·
Mar 6, 2024

VSViG: Real-time Video-based Seizure Detection via Skeleton-based Spatiotemporal ViG

An accurate and efficient epileptic seizure onset detection can significantly benefit patients. Traditional diagnostic methods, primarily relying on electroencephalograms (EEGs), often result in cumbersome and non-portable solutions, making continuous patient monitoring challenging. The video-based seizure detection system is expected to free patients from the constraints of scalp or implanted EEG devices and enable remote monitoring in residential settings. Previous video-based methods neither enable all-day monitoring nor provide short detection latency due to insufficient resources and ineffective patient action recognition techniques. Additionally, skeleton-based action recognition approaches remain limitations in identifying subtle seizure-related actions. To address these challenges, we propose a novel Video-based Seizure detection model via a skeleton-based spatiotemporal Vision Graph neural network (VSViG) for its efficient, accurate and timely purpose in real-time scenarios. Our experimental results indicate VSViG outperforms previous state-of-the-art action recognition models on our collected patients' video data with higher accuracy (5.9% error), lower FLOPs (0.4G), and smaller model size (1.4M). Furthermore, by integrating a decision-making rule that combines output probabilities and an accumulative function, we achieve a 5.1 s detection latency after EEG onset, a 13.1 s detection advance before clinical onset, and a zero false detection rate. The project homepage is available at: https://github.com/xuyankun/VSViG/

  • 7 authors
·
Nov 24, 2023

Computer Vision for Clinical Gait Analysis: A Gait Abnormality Video Dataset

Clinical gait analysis (CGA) using computer vision is an emerging field in artificial intelligence that faces barriers of accessible, real-world data, and clear task objectives. This paper lays the foundation for current developments in CGA as well as vision-based methods and datasets suitable for gait analysis. We introduce The Gait Abnormality in Video Dataset (GAVD) in response to our review of over 150 current gait-related computer vision datasets, which highlighted the need for a large and accessible gait dataset clinically annotated for CGA. GAVD stands out as the largest video gait dataset, comprising 1874 sequences of normal, abnormal and pathological gaits. Additionally, GAVD includes clinically annotated RGB data sourced from publicly available content on online platforms. It also encompasses over 400 subjects who have undergone clinical grade visual screening to represent a diverse range of abnormal gait patterns, captured in various settings, including hospital clinics and urban uncontrolled outdoor environments. We demonstrate the validity of the dataset and utility of action recognition models for CGA using pretrained models Temporal Segment Networks(TSN) and SlowFast network to achieve video abnormality detection of 94% and 92% respectively when tested on GAVD dataset. A GitHub repository https://github.com/Rahmyyy/GAVD consisting of convenient URL links, and clinically relevant annotation for CGA is provided for over 450 online videos, featuring diverse subjects performing a range of normal, pathological, and abnormal gait patterns.

  • 4 authors
·
Jul 4, 2024

Spatio-Temporal Context Prompting for Zero-Shot Action Detection

Spatio-temporal action detection encompasses the tasks of localizing and classifying individual actions within a video. Recent works aim to enhance this process by incorporating interaction modeling, which captures the relationship between people and their surrounding context. However, these approaches have primarily focused on fully-supervised learning, and the current limitation lies in the lack of generalization capability to recognize unseen action categories. In this paper, we aim to adapt the pretrained image-language models to detect unseen actions. To this end, we propose a method which can effectively leverage the rich knowledge of visual-language models to perform Person-Context Interaction. Meanwhile, our Context Prompting module will utilize contextual information to prompt labels, thereby enhancing the generation of more representative text features. Moreover, to address the challenge of recognizing distinct actions by multiple people at the same timestamp, we design the Interest Token Spotting mechanism which employs pretrained visual knowledge to find each person's interest context tokens, and then these tokens will be used for prompting to generate text features tailored to each individual. To evaluate the ability to detect unseen actions, we propose a comprehensive benchmark on J-HMDB, UCF101-24, and AVA datasets. The experiments show that our method achieves superior results compared to previous approaches and can be further extended to multi-action videos, bringing it closer to real-world applications. The code and data can be found in https://webber2933.github.io/ST-CLIP-project-page.

  • 3 authors
·
Aug 28, 2024

Tell me what you see: A zero-shot action recognition method based on natural language descriptions

This paper presents a novel approach to Zero-Shot Action Recognition. Recent works have explored the detection and classification of objects to obtain semantic information from videos with remarkable performance. Inspired by them, we propose using video captioning methods to extract semantic information about objects, scenes, humans, and their relationships. To the best of our knowledge, this is the first work to represent both videos and labels with descriptive sentences. More specifically, we represent videos using sentences generated via video captioning methods and classes using sentences extracted from documents acquired through search engines on the Internet. Using these representations, we build a shared semantic space employing BERT-based embedders pre-trained in the paraphrasing task on multiple text datasets. The projection of both visual and semantic information onto this space is straightforward, as they are sentences, enabling classification using the nearest neighbor rule. We demonstrate that representing videos and labels with sentences alleviates the domain adaptation problem. Additionally, we show that word vectors are unsuitable for building the semantic embedding space of our descriptions. Our method outperforms the state-of-the-art performance on the UCF101 dataset by 3.3 p.p. in accuracy under the TruZe protocol and achieves competitive results on both the UCF101 and HMDB51 datasets under the conventional protocol (0/50\% - training/testing split). Our code is available at https://github.com/valterlej/zsarcap.

  • 4 authors
·
Dec 18, 2021

FMI-TAL: Few-shot Multiple Instances Temporal Action Localization by Probability Distribution Learning and Interval Cluster Refinement

The present few-shot temporal action localization model can't handle the situation where videos contain multiple action instances. So the purpose of this paper is to achieve manifold action instances localization in a lengthy untrimmed query video using limited trimmed support videos. To address this challenging problem effectively, we proposed a novel solution involving a spatial-channel relation transformer with probability learning and cluster refinement. This method can accurately identify the start and end boundaries of actions in the query video, utilizing only a limited number of labeled videos. Our proposed method is adept at capturing both temporal and spatial contexts to effectively classify and precisely locate actions in videos, enabling a more comprehensive utilization of these crucial details. The selective cosine penalization algorithm is designed to suppress temporal boundaries that do not include action scene switches. The probability learning combined with the label generation algorithm alleviates the problem of action duration diversity and enhances the model's ability to handle fuzzy action boundaries. The interval cluster can help us get the final results with multiple instances situations in few-shot temporal action localization. Our model achieves competitive performance through meticulous experimentation utilizing the benchmark datasets ActivityNet1.3 and THUMOS14. Our code is readily available at https://github.com/ycwfs/FMI-TAL.

  • 3 authors
·
Aug 25, 2024

AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions

This paper introduces a video dataset of spatio-temporally localized Atomic Visual Actions (AVA). The AVA dataset densely annotates 80 atomic visual actions in 430 15-minute video clips, where actions are localized in space and time, resulting in 1.58M action labels with multiple labels per person occurring frequently. The key characteristics of our dataset are: (1) the definition of atomic visual actions, rather than composite actions; (2) precise spatio-temporal annotations with possibly multiple annotations for each person; (3) exhaustive annotation of these atomic actions over 15-minute video clips; (4) people temporally linked across consecutive segments; and (5) using movies to gather a varied set of action representations. This departs from existing datasets for spatio-temporal action recognition, which typically provide sparse annotations for composite actions in short video clips. We will release the dataset publicly. AVA, with its realistic scene and action complexity, exposes the intrinsic difficulty of action recognition. To benchmark this, we present a novel approach for action localization that builds upon the current state-of-the-art methods, and demonstrates better performance on JHMDB and UCF101-24 categories. While setting a new state of the art on existing datasets, the overall results on AVA are low at 15.6% mAP, underscoring the need for developing new approaches for video understanding.

  • 12 authors
·
May 23, 2017

Learning from Weakly-labeled Web Videos via Exploring Sub-Concepts

Learning visual knowledge from massive weakly-labeled web videos has attracted growing research interests thanks to the large corpus of easily accessible video data on the Internet. However, for video action recognition, the action of interest might only exist in arbitrary clips of untrimmed web videos, resulting in high label noises in the temporal space. To address this issue, we introduce a new method for pre-training video action recognition models using queried web videos. Instead of trying to filter out, we propose to convert the potential noises in these queried videos to useful supervision signals by defining the concept of Sub-Pseudo Label (SPL). Specifically, SPL spans out a new set of meaningful "middle ground" label space constructed by extrapolating the original weak labels during video querying and the prior knowledge distilled from a teacher model. Consequently, SPL provides enriched supervision for video models to learn better representations. SPL is fairly simple and orthogonal to popular teacher-student self-training frameworks without extra training cost. We validate the effectiveness of our method on four video action recognition datasets and a weakly-labeled image dataset to study the generalization ability. Experiments show that SPL outperforms several existing pre-training strategies using pseudo-labels and the learned representations lead to competitive results when fine-tuning on HMDB-51 and UCF-101 compared with recent pre-training methods.

  • 8 authors
·
Jan 11, 2021

Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion

One significant factor we expect the video representation learning to capture, especially in contrast with the image representation learning, is the object motion. However, we found that in the current mainstream video datasets, some action categories are highly related with the scene where the action happens, making the model tend to degrade to a solution where only the scene information is encoded. For example, a trained model may predict a video as playing football simply because it sees the field, neglecting that the subject is dancing as a cheerleader on the field. This is against our original intention towards the video representation learning and may bring scene bias on different dataset that can not be ignored. In order to tackle this problem, we propose to decouple the scene and the motion (DSM) with two simple operations, so that the model attention towards the motion information is better paid. Specifically, we construct a positive clip and a negative clip for each video. Compared to the original video, the positive/negative is motion-untouched/broken but scene-broken/untouched by Spatial Local Disturbance and Temporal Local Disturbance. Our objective is to pull the positive closer while pushing the negative farther to the original clip in the latent space. In this way, the impact of the scene is weakened while the temporal sensitivity of the network is further enhanced. We conduct experiments on two tasks with various backbones and different pre-training datasets, and find that our method surpass the SOTA methods with a remarkable 8.1% and 8.8% improvement towards action recognition task on the UCF101 and HMDB51 datasets respectively using the same backbone.

  • 8 authors
·
Sep 12, 2020

ActionHub: A Large-scale Action Video Description Dataset for Zero-shot Action Recognition

Zero-shot action recognition (ZSAR) aims to learn an alignment model between videos and class descriptions of seen actions that is transferable to unseen actions. The text queries (class descriptions) used in existing ZSAR works, however, are often short action names that fail to capture the rich semantics in the videos, leading to misalignment. With the intuition that video content descriptions (e.g., video captions) can provide rich contextual information of visual concepts in videos, we propose to utilize human annotated video descriptions to enrich the semantics of the class descriptions of each action. However, all existing action video description datasets are limited in terms of the number of actions, the semantics of video descriptions, etc. To this end, we collect a large-scale action video descriptions dataset named ActionHub, which covers a total of 1,211 common actions and provides 3.6 million action video descriptions. With the proposed ActionHub dataset, we further propose a novel Cross-modality and Cross-action Modeling (CoCo) framework for ZSAR, which consists of a Dual Cross-modality Alignment module and a Cross-action Invariance Mining module. Specifically, the Dual Cross-modality Alignment module utilizes both action labels and video descriptions from ActionHub to obtain rich class semantic features for feature alignment. The Cross-action Invariance Mining module exploits a cycle-reconstruction process between the class semantic feature spaces of seen actions and unseen actions, aiming to guide the model to learn cross-action invariant representations. Extensive experimental results demonstrate that our CoCo framework significantly outperforms the state-of-the-art on three popular ZSAR benchmarks (i.e., Kinetics-ZSAR, UCF101 and HMDB51) under two different learning protocols in ZSAR. We will release our code, models, and the proposed ActionHub dataset.

  • 5 authors
·
Jan 21, 2024

RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning

We study unsupervised video representation learning that seeks to learn both motion and appearance features from unlabeled video only, which can be reused for downstream tasks such as action recognition. This task, however, is extremely challenging due to 1) the highly complex spatial-temporal information in videos; and 2) the lack of labeled data for training. Unlike the representation learning for static images, it is difficult to construct a suitable self-supervised task to well model both motion and appearance features. More recently, several attempts have been made to learn video representation through video playback speed prediction. However, it is non-trivial to obtain precise speed labels for the videos. More critically, the learnt models may tend to focus on motion pattern and thus may not learn appearance features well. In this paper, we observe that the relative playback speed is more consistent with motion pattern, and thus provide more effective and stable supervision for representation learning. Therefore, we propose a new way to perceive the playback speed and exploit the relative speed between two video clips as labels. In this way, we are able to well perceive speed and learn better motion features. Moreover, to ensure the learning of appearance features, we further propose an appearance-focused task, where we enforce the model to perceive the appearance difference between two video clips. We show that optimizing the two tasks jointly consistently improves the performance on two downstream tasks, namely action recognition and video retrieval. Remarkably, for action recognition on UCF101 dataset, we achieve 93.7% accuracy without the use of labeled data for pre-training, which outperforms the ImageNet supervised pre-trained model. Code and pre-trained models can be found at https://github.com/PeihaoChen/RSPNet.

  • 8 authors
·
Oct 27, 2020

VT-LVLM-AR: A Video-Temporal Large Vision-Language Model Adapter for Fine-Grained Action Recognition in Long-Term Videos

Human action recognition in long-term videos, characterized by complex backgrounds and subtle action differences, poses significant challenges for traditional deep learning models due to computational overhead, difficulty in capturing long-range temporal dependencies, and limited semantic understanding. While Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) have shown remarkable capabilities in multi-modal understanding and reasoning, their direct application to continuous video streams for fine-grained action recognition remains an open problem. This paper introduces VT-LVLM-AR (Video-Temporal Large Vision-Language Model Adapter for Action Recognition), a novel framework designed to bridge this gap. VT-LVLM-AR comprises a Video-to-Event Mapper (VTEM) that efficiently transforms raw video into compact, semantically rich, and temporally coherent "visual event sequences" through lightweight spatio-temporal feature extraction, adaptive temporal pooling, and conceptual quantization with an event coherence bias. These visual event sequences are then fed into an LVLM-based Action Reasoning module, specifically a frozen LLaVA-1.5 model, adapted using parameter-efficient Prompt Tuning (P-Tuning v2) for action classification. Comprehensive evaluations on the NTU RGB+D and NTU RGB+D 120 datasets demonstrate that VT-LVLM-AR consistently achieves state-of-the-art performance, surpassing existing methods (e.g., 94.1% accuracy on NTU RGB+D X-Sub). Ablation studies confirm the critical contributions of VTEM's components and the efficacy of Prompt Tuning, while human evaluations underscore the interpretability of our visual event representations. This work highlights the immense potential of leveraging LVLMs for robust and interpretable video action understanding through effective video-to-language translation and efficient model adaptation.

  • 3 authors
·
Aug 21

Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding

Computer vision has a great potential to help our daily lives by searching for lost keys, watering flowers or reminding us to take a pill. To succeed with such tasks, computer vision methods need to be trained from real and diverse examples of our daily dynamic scenes. While most of such scenes are not particularly exciting, they typically do not appear on YouTube, in movies or TV broadcasts. So how do we collect sufficiently many diverse but boring samples representing our lives? We propose a novel Hollywood in Homes approach to collect such data. Instead of shooting videos in the lab, we ensure diversity by distributing and crowdsourcing the whole process of video creation from script writing to video recording and annotation. Following this procedure we collect a new dataset, Charades, with hundreds of people recording videos in their own homes, acting out casual everyday activities. The dataset is composed of 9,848 annotated videos with an average length of 30 seconds, showing activities of 267 people from three continents. Each video is annotated by multiple free-text descriptions, action labels, action intervals and classes of interacted objects. In total, Charades provides 27,847 video descriptions, 66,500 temporally localized intervals for 157 action classes and 41,104 labels for 46 object classes. Using this rich data, we evaluate and provide baseline results for several tasks including action recognition and automatic description generation. We believe that the realism, diversity, and casual nature of this dataset will present unique challenges and new opportunities for computer vision community.

  • 6 authors
·
Apr 6, 2016

Rethinking Video-Text Understanding: Retrieval from Counterfactually Augmented Data

Recent video-text foundation models have demonstrated strong performance on a wide variety of downstream video understanding tasks. Can these video-text models genuinely understand the contents of natural videos? Standard video-text evaluations could be misleading as many questions can be inferred merely from the objects and contexts in a single frame or biases inherent in the datasets. In this paper, we aim to better assess the capabilities of current video-text models and understand their limitations. We propose a novel evaluation task for video-text understanding, namely retrieval from counterfactually augmented data (RCAD), and a new Feint6K dataset. To succeed on our new evaluation task, models must derive a comprehensive understanding of the video from cross-frame reasoning. Analyses show that previous video-text foundation models can be easily fooled by counterfactually augmented data and are far behind human-level performance. In order to narrow the gap between video-text models and human performance on RCAD, we identify a key limitation of current contrastive approaches on video-text data and introduce LLM-teacher, a more effective approach to learn action semantics by leveraging knowledge obtained from a pretrained large language model. Experiments and analyses show that our approach successfully learn more discriminative action embeddings and improves results on Feint6K when applied to multiple video-text models. Our Feint6K dataset and project page is available at https://feint6k.github.io.

  • 8 authors
·
Jul 17, 2024

Self-supervised Video Representation Learning by Uncovering Spatio-temporal Statistics

This paper proposes a novel pretext task to address the self-supervised video representation learning problem. Specifically, given an unlabeled video clip, we compute a series of spatio-temporal statistical summaries, such as the spatial location and dominant direction of the largest motion, the spatial location and dominant color of the largest color diversity along the temporal axis, etc. Then a neural network is built and trained to yield the statistical summaries given the video frames as inputs. In order to alleviate the learning difficulty, we employ several spatial partitioning patterns to encode rough spatial locations instead of exact spatial Cartesian coordinates. Our approach is inspired by the observation that human visual system is sensitive to rapidly changing contents in the visual field, and only needs impressions about rough spatial locations to understand the visual contents. To validate the effectiveness of the proposed approach, we conduct extensive experiments with four 3D backbone networks, i.e., C3D, 3D-ResNet, R(2+1)D and S3D-G. The results show that our approach outperforms the existing approaches across these backbone networks on four downstream video analysis tasks including action recognition, video retrieval, dynamic scene recognition, and action similarity labeling. The source code is publicly available at: https://github.com/laura-wang/video_repres_sts.

  • 6 authors
·
Aug 31, 2020

TransRAC: Encoding Multi-scale Temporal Correlation with Transformers for Repetitive Action Counting

Counting repetitive actions are widely seen in human activities such as physical exercise. Existing methods focus on performing repetitive action counting in short videos, which is tough for dealing with longer videos in more realistic scenarios. In the data-driven era, the degradation of such generalization capability is mainly attributed to the lack of long video datasets. To complement this margin, we introduce a new large-scale repetitive action counting dataset covering a wide variety of video lengths, along with more realistic situations where action interruption or action inconsistencies occur in the video. Besides, we also provide a fine-grained annotation of the action cycles instead of just counting annotation along with a numerical value. Such a dataset contains 1,451 videos with about 20,000 annotations, which is more challenging. For repetitive action counting towards more realistic scenarios, we further propose encoding multi-scale temporal correlation with transformers that can take into account both performance and efficiency. Furthermore, with the help of fine-grained annotation of action cycles, we propose a density map regression-based method to predict the action period, which yields better performance with sufficient interpretability. Our proposed method outperforms state-of-the-art methods on all datasets and also achieves better performance on the unseen dataset without fine-tuning. The dataset and code are available.

  • 6 authors
·
Apr 3, 2022

Two-stream Spatiotemporal Feature for Video QA Task

Understanding the content of videos is one of the core techniques for developing various helpful applications in the real world, such as recognizing various human actions for surveillance systems or customer behavior analysis in an autonomous shop. However, understanding the content or story of the video still remains a challenging problem due to its sheer amount of data and temporal structure. In this paper, we propose a multi-channel neural network structure that adopts a two-stream network structure, which has been shown high performance in human action recognition field, and use it as a spatiotemporal video feature extractor for solving video question and answering task. We also adopt a squeeze-and-excitation structure to two-stream network structure for achieving a channel-wise attended spatiotemporal feature. For jointly modeling the spatiotemporal features from video and the textual features from the question, we design a context matching module with a level adjusting layer to remove the gap of information between visual and textual features by applying attention mechanism on joint modeling. Finally, we adopt a scoring mechanism and smoothed ranking loss objective function for selecting the correct answer from answer candidates. We evaluate our model with TVQA dataset, and our approach shows the improved result in textual only setting, but the result with visual feature shows the limitation and possibility of our approach.

  • 3 authors
·
Jul 11, 2019

CDFSL-V: Cross-Domain Few-Shot Learning for Videos

Few-shot video action recognition is an effective approach to recognizing new categories with only a few labeled examples, thereby reducing the challenges associated with collecting and annotating large-scale video datasets. Existing methods in video action recognition rely on large labeled datasets from the same domain. However, this setup is not realistic as novel categories may come from different data domains that may have different spatial and temporal characteristics. This dissimilarity between the source and target domains can pose a significant challenge, rendering traditional few-shot action recognition techniques ineffective. To address this issue, in this work, we propose a novel cross-domain few-shot video action recognition method that leverages self-supervised learning and curriculum learning to balance the information from the source and target domains. To be particular, our method employs a masked autoencoder-based self-supervised training objective to learn from both source and target data in a self-supervised manner. Then a progressive curriculum balances learning the discriminative information from the source dataset with the generic information learned from the target domain. Initially, our curriculum utilizes supervised learning to learn class discriminative features from the source data. As the training progresses, we transition to learning target-domain-specific features. We propose a progressive curriculum to encourage the emergence of rich features in the target domain based on class discriminative supervised features in the source domain. %a schedule that helps with this transition. We evaluate our method on several challenging benchmark datasets and demonstrate that our approach outperforms existing cross-domain few-shot learning techniques. Our code is available at https://github.com/Sarinda251/CDFSL-V{https://github.com/Sarinda251/CDFSL-V}

  • 4 authors
·
Sep 7, 2023

A Renaissance of Explicit Motion Information Mining from Transformers for Action Recognition

Recently, action recognition has been dominated by transformer-based methods, thanks to their spatiotemporal contextual aggregation capacities. However, despite the significant progress achieved on scene-related datasets, they do not perform well on motion-sensitive datasets due to the lack of elaborate motion modeling designs. Meanwhile, we observe that the widely-used cost volume in traditional action recognition is highly similar to the affinity matrix defined in self-attention, but equipped with powerful motion modeling capacities. In light of this, we propose to integrate those effective motion modeling properties into the existing transformer in a unified and neat way, with the proposal of the Explicit Motion Information Mining module (EMIM). In EMIM, we propose to construct the desirable affinity matrix in a cost volume style, where the set of key candidate tokens is sampled from the query-based neighboring area in the next frame in a sliding-window manner. Then, the constructed affinity matrix is used to aggregate contextual information for appearance modeling and is converted into motion features for motion modeling as well. We validate the motion modeling capacities of our method on four widely-used datasets, and our method performs better than existing state-of-the-art approaches, especially on motion-sensitive datasets, i.e., Something-Something V1 & V2.

  • 7 authors
·
Oct 21

LALM: Long-Term Action Anticipation with Language Models

Understanding human activity is a crucial yet intricate task in egocentric vision, a field that focuses on capturing visual perspectives from the camera wearer's viewpoint. While traditional methods heavily rely on representation learning trained on extensive video data, there exists a significant limitation: obtaining effective video representations proves challenging due to the inherent complexity and variability in human activities.Furthermore, exclusive dependence on video-based learning may constrain a model's capability to generalize across long-tail classes and out-of-distribution scenarios. In this study, we introduce a novel approach for long-term action anticipation using language models (LALM), adept at addressing the complex challenges of long-term activity understanding without the need for extensive training. Our method incorporates an action recognition model to track previous action sequences and a vision-language model to articulate relevant environmental details. By leveraging the context provided by these past events, we devise a prompting strategy for action anticipation using large language models (LLMs). Moreover, we implement Maximal Marginal Relevance for example selection to facilitate in-context learning of the LLMs. Our experimental results demonstrate that LALM surpasses the state-of-the-art methods in the task of long-term action anticipation on the Ego4D benchmark. We further validate LALM on two additional benchmarks, affirming its capacity for generalization across intricate activities with different sets of taxonomies. These are achieved without specific fine-tuning.

  • 6 authors
·
Nov 28, 2023

Described Spatial-Temporal Video Detection

Detecting visual content on language expression has become an emerging topic in the community. However, in the video domain, the existing setting, i.e., spatial-temporal video grounding (STVG), is formulated to only detect one pre-existing object in each frame, ignoring the fact that language descriptions can involve none or multiple entities within a video. In this work, we advance the STVG to a more practical setting called described spatial-temporal video detection (DSTVD) by overcoming the above limitation. To facilitate the exploration of DSTVD, we first introduce a new benchmark, namely DVD-ST. Notably, DVD-ST supports grounding from none to many objects onto the video in response to queries and encompasses a diverse range of over 150 entities, including appearance, actions, locations, and interactions. The extensive breadth and diversity of the DVD-ST dataset make it an exemplary testbed for the investigation of DSTVD. In addition to the new benchmark, we further present two baseline methods for our proposed DSTVD task by extending two representative STVG models, i.e., TubeDETR, and STCAT. These extended models capitalize on tubelet queries to localize and track referred objects across the video sequence. Besides, we adjust the training objectives of these models to optimize spatial and temporal localization accuracy and multi-class classification capabilities. Furthermore, we benchmark the baselines on the introduced DVD-ST dataset and conduct extensive experimental analysis to guide future investigation. Our code and benchmark will be publicly available.

  • 9 authors
·
Jul 8, 2024

Low-Latency Human Action Recognition with Weighted Multi-Region Convolutional Neural Network

Spatio-temporal contexts are crucial in understanding human actions in videos. Recent state-of-the-art Convolutional Neural Network (ConvNet) based action recognition systems frequently involve 3D spatio-temporal ConvNet filters, chunking videos into fixed length clips and Long Short Term Memory (LSTM) networks. Such architectures are designed to take advantage of both short term and long term temporal contexts, but also requires the accumulation of a predefined number of video frames (e.g., to construct video clips for 3D ConvNet filters, to generate enough inputs for LSTMs). For applications that require low-latency online predictions of fast-changing action scenes, a new action recognition system is proposed in this paper. Termed "Weighted Multi-Region Convolutional Neural Network" (WMR ConvNet), the proposed system is LSTM-free, and is based on 2D ConvNet that does not require the accumulation of video frames for 3D ConvNet filtering. Unlike early 2D ConvNets that are based purely on RGB frames and optical flow frames, the WMR ConvNet is designed to simultaneously capture multiple spatial and short term temporal cues (e.g., human poses, occurrences of objects in the background) with both the primary region (foreground) and secondary regions (mostly background). On both the UCF101 and HMDB51 datasets, the proposed WMR ConvNet achieves the state-of-the-art performance among competing low-latency algorithms. Furthermore, WMR ConvNet even outperforms the 3D ConvNet based C3D algorithm that requires video frame accumulation. In an ablation study with the optical flow ConvNet stream removed, the ablated WMR ConvNet nevertheless outperforms competing algorithms.

  • 5 authors
·
May 8, 2018