new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 29

MotionDuet: Dual-Conditioned 3D Human Motion Generation with Video-Regularized Text Learning

3D Human motion generation is pivotal across film, animation, gaming, and embodied intelligence. Traditional 3D motion synthesis relies on costly motion capture, while recent work shows that 2D videos provide rich, temporally coherent observations of human behavior. Existing approaches, however, either map high-level text descriptions to motion or rely solely on video conditioning, leaving a gap between generated dynamics and real-world motion statistics. We introduce MotionDuet, a multimodal framework that aligns motion generation with the distribution of video-derived representations. In this dual-conditioning paradigm, video cues extracted from a pretrained model (e.g., VideoMAE) ground low-level motion dynamics, while textual prompts provide semantic intent. To bridge the distribution gap across modalities, we propose Dual-stream Unified Encoding and Transformation (DUET) and a Distribution-Aware Structural Harmonization (DASH) loss. DUET fuses video-informed cues into the motion latent space via unified encoding and dynamic attention, while DASH aligns motion trajectories with both distributional and structural statistics of video features. An auto-guidance mechanism further balances textual and visual signals by leveraging a weakened copy of the model, enhancing controllability without sacrificing diversity. Extensive experiments demonstrate that MotionDuet generates realistic and controllable human motions, surpassing strong state-of-the-art baselines.

  • 7 authors
·
Nov 22

StereoDiff: Stereo-Diffusion Synergy for Video Depth Estimation

Recent video depth estimation methods achieve great performance by following the paradigm of image depth estimation, i.e., typically fine-tuning pre-trained video diffusion models with massive data. However, we argue that video depth estimation is not a naive extension of image depth estimation. The temporal consistency requirements for dynamic and static regions in videos are fundamentally different. Consistent video depth in static regions, typically backgrounds, can be more effectively achieved via stereo matching across all frames, which provides much stronger global 3D cues. While the consistency for dynamic regions still should be learned from large-scale video depth data to ensure smooth transitions, due to the violation of triangulation constraints. Based on these insights, we introduce StereoDiff, a two-stage video depth estimator that synergizes stereo matching for mainly the static areas with video depth diffusion for maintaining consistent depth transitions in dynamic areas. We mathematically demonstrate how stereo matching and video depth diffusion offer complementary strengths through frequency domain analysis, highlighting the effectiveness of their synergy in capturing the advantages of both. Experimental results on zero-shot, real-world, dynamic video depth benchmarks, both indoor and outdoor, demonstrate StereoDiff's SoTA performance, showcasing its superior consistency and accuracy in video depth estimation.

  • 5 authors
·
Jun 25

Adversarial Video Promotion Against Text-to-Video Retrieval

Thanks to the development of cross-modal models, text-to-video retrieval (T2VR) is advancing rapidly, but its robustness remains largely unexamined. Existing attacks against T2VR are designed to push videos away from queries, i.e., suppressing the ranks of videos, while the attacks that pull videos towards selected queries, i.e., promoting the ranks of videos, remain largely unexplored. These attacks can be more impactful as attackers may gain more views/clicks for financial benefits and widespread (mis)information. To this end, we pioneer the first attack against T2VR to promote videos adversarially, dubbed the Video Promotion attack (ViPro). We further propose Modal Refinement (MoRe) to capture the finer-grained, intricate interaction between visual and textual modalities to enhance black-box transferability. Comprehensive experiments cover 2 existing baselines, 3 leading T2VR models, 3 prevailing datasets with over 10k videos, evaluated under 3 scenarios. All experiments are conducted in a multi-target setting to reflect realistic scenarios where attackers seek to promote the video regarding multiple queries simultaneously. We also evaluated our attacks for defences and imperceptibility. Overall, ViPro surpasses other baselines by over 30/10/4% for white/grey/black-box settings on average. Our work highlights an overlooked vulnerability, provides a qualitative analysis on the upper/lower bound of our attacks, and offers insights into potential counterplays. Code will be publicly available at https://github.com/michaeltian108/ViPro.

  • 6 authors
·
Aug 9 2

Text-Guided Video Masked Autoencoder

Recent video masked autoencoder (MAE) works have designed improved masking algorithms focused on saliency. These works leverage visual cues such as motion to mask the most salient regions. However, the robustness of such visual cues depends on how often input videos match underlying assumptions. On the other hand, natural language description is an information dense representation of video that implicitly captures saliency without requiring modality-specific assumptions, and has not been explored yet for video MAE. To this end, we introduce a novel text-guided masking algorithm (TGM) that masks the video regions with highest correspondence to paired captions. Without leveraging any explicit visual cues for saliency, our TGM is competitive with state-of-the-art masking algorithms such as motion-guided masking. To further benefit from the semantics of natural language for masked reconstruction, we next introduce a unified framework for joint MAE and masked video-text contrastive learning. We show that across existing masking algorithms, unifying MAE and masked video-text contrastive learning improves downstream performance compared to pure MAE on a variety of video recognition tasks, especially for linear probe. Within this unified framework, our TGM achieves the best relative performance on five action recognition and one egocentric datasets, highlighting the complementary nature of natural language for masked video modeling.

  • 6 authors
·
Aug 1, 2024

E-ViLM: Efficient Video-Language Model via Masked Video Modeling with Semantic Vector-Quantized Tokenizer

To build scalable models for challenging real-world tasks, it is important to learn from diverse, multi-modal data in various forms (e.g., videos, text, and images). Among the existing works, a plethora of them have focused on leveraging large but cumbersome cross-modal architectures. Regardless of their effectiveness, larger architectures unavoidably prevent the models from being extended to real-world applications, so building a lightweight VL architecture and an efficient learning schema is of great practical value. In this paper, we propose an Efficient Video-Language Model (dubbed as E-ViLM) and a masked video modeling (MVM) schema, assisted with a semantic vector-quantized tokenizer. In particular, our E-ViLM learns to reconstruct the semantic labels of masked video regions, produced by the pre-trained vector-quantized tokenizer, which discretizes the continuous visual signals into labels. We show that with our simple MVM task and regular VL pre-training modelings, our E-ViLM, despite its compactness, is able to learn expressive representations from Video-Language corpus and generalize well to extensive Video-Language tasks including video question answering, text-to-video retrieval, etc. In particular, our E-ViLM obtains obvious efficiency improvements by reaching competing performances with faster inference speed, i.e., our model reaches 39.3% Top-1 accuracy on the MSRVTT benchmark, retaining 91.4% of the accuracy of state-of-the-art larger VL architecture with only 15% parameters and 94.8% fewer GFLOPs. We also provide extensive ablative studies that validate the effectiveness of our proposed learning schema for E-ViLM.

  • 4 authors
·
Nov 28, 2023

SAMA: Towards Multi-Turn Referential Grounded Video Chat with Large Language Models

Achieving fine-grained spatio-temporal understanding in videos remains a major challenge for current Video Large Multimodal Models (Video LMMs). Addressing this challenge requires mastering two core capabilities: video referring understanding, which captures the semantics of video regions, and video grounding, which segments object regions based on natural language descriptions. However, most existing approaches tackle these tasks in isolation, limiting progress toward unified, referentially grounded video interaction. We identify a key bottleneck in the lack of high-quality, unified video instruction data and a comprehensive benchmark for evaluating referentially grounded video chat. To address these challenges, we contribute in three core aspects: dataset, model, and benchmark. First, we introduce SAMA-239K, a large-scale dataset comprising 15K videos specifically curated to enable joint learning of video referring understanding, grounding, and multi-turn video chat. Second, we propose the SAMA model, which incorporates a versatile spatio-temporal context aggregator and a Segment Anything Model to jointly enhance fine-grained video comprehension and precise grounding capabilities. Finally, we establish SAMA-Bench, a meticulously designed benchmark consisting of 5,067 questions from 522 videos, to comprehensively evaluate the integrated capabilities of Video LMMs in multi-turn, spatio-temporal referring understanding and grounded dialogue. Extensive experiments and benchmarking results show that SAMA not only achieves strong performance on SAMA-Bench but also sets a new state-of-the-art on general grounding benchmarks, while maintaining highly competitive performance on standard visual understanding benchmarks.

  • 6 authors
·
May 24

Chat with AI: The Surprising Turn of Real-time Video Communication from Human to AI

AI Video Chat emerges as a new paradigm for Real-time Communication (RTC), where one peer is not a human, but a Multimodal Large Language Model (MLLM). This makes interaction between humans and AI more intuitive, as if chatting face-to-face with a real person. However, this poses significant challenges to latency, because the MLLM inference takes up most of the response time, leaving very little time for video streaming. Due to network uncertainty and instability, transmission latency becomes a critical bottleneck preventing AI from being like a real person. To address this, we propose Artic, an AI-oriented Real-time Communication framework, exploring the network requirement shift from "humans watching video" to "AI understanding video". To reduce bitrate dramatically while maintaining MLLM accuracy, we propose Context-Aware Video Streaming that recognizes the importance of each video region for chat and allocates bitrate almost exclusively to chat-important regions. To avoid packet retransmission, we propose Loss-Resilient Adaptive Frame Rate that leverages previous frames to substitute for lost/delayed frames while avoiding bitrate waste. To evaluate the impact of video streaming quality on MLLM accuracy, we build the first benchmark, named Degraded Video Understanding Benchmark (DeViBench). Finally, we discuss some open questions and ongoing solutions for AI Video Chat.

  • 4 authors
·
Jul 14 2

HNeRV: A Hybrid Neural Representation for Videos

Implicit neural representations store videos as neural networks and have performed well for various vision tasks such as video compression and denoising. With frame index or positional index as input, implicit representations (NeRV, E-NeRV, \etc) reconstruct video from fixed and content-agnostic embeddings. Such embedding largely limits the regression capacity and internal generalization for video interpolation. In this paper, we propose a Hybrid Neural Representation for Videos (HNeRV), where a learnable encoder generates content-adaptive embeddings, which act as the decoder input. Besides the input embedding, we introduce HNeRV blocks, which ensure model parameters are evenly distributed across the entire network, such that higher layers (layers near the output) can have more capacity to store high-resolution content and video details. With content-adaptive embeddings and re-designed architecture, HNeRV outperforms implicit methods in video regression tasks for both reconstruction quality (+4.7 PSNR) and convergence speed (16times faster), and shows better internal generalization. As a simple and efficient video representation, HNeRV also shows decoding advantages for speed, flexibility, and deployment, compared to traditional codecs~(H.264, H.265) and learning-based compression methods. Finally, we explore the effectiveness of HNeRV on downstream tasks such as video compression and video inpainting. We provide project page at https://haochen-rye.github.io/HNeRV, and Code at https://github.com/haochen-rye/HNeRV

  • 4 authors
·
Apr 5, 2023

Boosting Neural Representations for Videos with a Conditional Decoder

Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing, showing remarkable versatility across various video tasks. However, existing methods often fail to fully leverage their representation capabilities, primarily due to inadequate alignment of intermediate features during target frame decoding. This paper introduces a universal boosting framework for current implicit video representation approaches. Specifically, we utilize a conditional decoder with a temporal-aware affine transform module, which uses the frame index as a prior condition to effectively align intermediate features with target frames. Besides, we introduce a sinusoidal NeRV-like block to generate diverse intermediate features and achieve a more balanced parameter distribution, thereby enhancing the model's capacity. With a high-frequency information-preserving reconstruction loss, our approach successfully boosts multiple baseline INRs in the reconstruction quality and convergence speed for video regression, and exhibits superior inpainting and interpolation results. Further, we integrate a consistent entropy minimization technique and develop video codecs based on these boosted INRs. Experiments on the UVG dataset confirm that our enhanced codecs significantly outperform baseline INRs and offer competitive rate-distortion performance compared to traditional and learning-based codecs.

  • 8 authors
·
Feb 28, 2024

FantasyWorld: Geometry-Consistent World Modeling via Unified Video and 3D Prediction

High-quality 3D world models are pivotal for embodied intelligence and Artificial General Intelligence (AGI), underpinning applications such as AR/VR content creation and robotic navigation. Despite the established strong imaginative priors, current video foundation models lack explicit 3D grounding capabilities, thus being limited in both spatial consistency and their utility for downstream 3D reasoning tasks. In this work, we present FantasyWorld, a geometry-enhanced framework that augments frozen video foundation models with a trainable geometric branch, enabling joint modeling of video latents and an implicit 3D field in a single forward pass. Our approach introduces cross-branch supervision, where geometry cues guide video generation and video priors regularize 3D prediction, thus yielding consistent and generalizable 3D-aware video representations. Notably, the resulting latents from the geometric branch can potentially serve as versatile representations for downstream 3D tasks such as novel view synthesis and navigation, without requiring per-scene optimization or fine-tuning. Extensive experiments show that FantasyWorld effectively bridges video imagination and 3D perception, outperforming recent geometry-consistent baselines in multi-view coherence and style consistency. Ablation studies further confirm that these gains stem from the unified backbone and cross-branch information exchange.

  • 5 authors
·
Sep 25

X-Pool: Cross-Modal Language-Video Attention for Text-Video Retrieval

In text-video retrieval, the objective is to learn a cross-modal similarity function between a text and a video that ranks relevant text-video pairs higher than irrelevant pairs. However, videos inherently express a much wider gamut of information than texts. Instead, texts often capture sub-regions of entire videos and are most semantically similar to certain frames within videos. Therefore, for a given text, a retrieval model should focus on the text's most semantically similar video sub-regions to make a more relevant comparison. Yet, most existing works aggregate entire videos without directly considering text. Common text-agnostic aggregations schemes include mean-pooling or self-attention over the frames, but these are likely to encode misleading visual information not described in the given text. To address this, we propose a cross-modal attention model called X-Pool that reasons between a text and the frames of a video. Our core mechanism is a scaled dot product attention for a text to attend to its most semantically similar frames. We then generate an aggregated video representation conditioned on the text's attention weights over the frames. We evaluate our method on three benchmark datasets of MSR-VTT, MSVD and LSMDC, achieving new state-of-the-art results by up to 12% in relative improvement in Recall@1. Our findings thereby highlight the importance of joint text-video reasoning to extract important visual cues according to text. Full code and demo can be found at: https://layer6ai-labs.github.io/xpool/

  • 7 authors
·
Mar 28, 2022

LocalStyleFool: Regional Video Style Transfer Attack Using Segment Anything Model

Previous work has shown that well-crafted adversarial perturbations can threaten the security of video recognition systems. Attackers can invade such models with a low query budget when the perturbations are semantic-invariant, such as StyleFool. Despite the query efficiency, the naturalness of the minutia areas still requires amelioration, since StyleFool leverages style transfer to all pixels in each frame. To close the gap, we propose LocalStyleFool, an improved black-box video adversarial attack that superimposes regional style-transfer-based perturbations on videos. Benefiting from the popularity and scalably usability of Segment Anything Model (SAM), we first extract different regions according to semantic information and then track them through the video stream to maintain the temporal consistency. Then, we add style-transfer-based perturbations to several regions selected based on the associative criterion of transfer-based gradient information and regional area. Perturbation fine adjustment is followed to make stylized videos adversarial. We demonstrate that LocalStyleFool can improve both intra-frame and inter-frame naturalness through a human-assessed survey, while maintaining competitive fooling rate and query efficiency. Successful experiments on the high-resolution dataset also showcase that scrupulous segmentation of SAM helps to improve the scalability of adversarial attacks under high-resolution data.

  • 8 authors
·
Mar 18, 2024

VSTAR: Generative Temporal Nursing for Longer Dynamic Video Synthesis

Despite tremendous progress in the field of text-to-video (T2V) synthesis, open-sourced T2V diffusion models struggle to generate longer videos with dynamically varying and evolving content. They tend to synthesize quasi-static videos, ignoring the necessary visual change-over-time implied in the text prompt. At the same time, scaling these models to enable longer, more dynamic video synthesis often remains computationally intractable. To address this challenge, we introduce the concept of Generative Temporal Nursing (GTN), where we aim to alter the generative process on the fly during inference to improve control over the temporal dynamics and enable generation of longer videos. We propose a method for GTN, dubbed VSTAR, which consists of two key ingredients: 1) Video Synopsis Prompting (VSP) - automatic generation of a video synopsis based on the original single prompt leveraging LLMs, which gives accurate textual guidance to different visual states of longer videos, and 2) Temporal Attention Regularization (TAR) - a regularization technique to refine the temporal attention units of the pre-trained T2V diffusion models, which enables control over the video dynamics. We experimentally showcase the superiority of the proposed approach in generating longer, visually appealing videos over existing open-sourced T2V models. We additionally analyze the temporal attention maps realized with and without VSTAR, demonstrating the importance of applying our method to mitigate neglect of the desired visual change over time.

  • 5 authors
·
Mar 20, 2024 3

Video-Based Human Pose Regression via Decoupled Space-Time Aggregation

By leveraging temporal dependency in video sequences, multi-frame human pose estimation algorithms have demonstrated remarkable results in complicated situations, such as occlusion, motion blur, and video defocus. These algorithms are predominantly based on heatmaps, resulting in high computation and storage requirements per frame, which limits their flexibility and real-time application in video scenarios, particularly on edge devices. In this paper, we develop an efficient and effective video-based human pose regression method, which bypasses intermediate representations such as heatmaps and instead directly maps the input to the output joint coordinates. Despite the inherent spatial correlation among adjacent joints of the human pose, the temporal trajectory of each individual joint exhibits relative independence. In light of this, we propose a novel Decoupled Space-Time Aggregation network (DSTA) to separately capture the spatial contexts between adjacent joints and the temporal cues of each individual joint, thereby avoiding the conflation of spatiotemporal dimensions. Concretely, DSTA learns a dedicated feature token for each joint to facilitate the modeling of their spatiotemporal dependencies. With the proposed joint-wise local-awareness attention mechanism, our method is capable of efficiently and flexibly utilizing the spatial dependency of adjacent joints and the temporal dependency of each joint itself. Extensive experiments demonstrate the superiority of our method. Compared to previous regression-based single-frame human pose estimation methods, DSTA significantly enhances performance, achieving an 8.9 mAP improvement on PoseTrack2017. Furthermore, our approach either surpasses or is on par with the state-of-the-art heatmap-based multi-frame human pose estimation methods. Project page: https://github.com/zgspose/DSTA.

  • 2 authors
·
Mar 28, 2024

DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO

Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training in enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success by employing a PPO-style reinforcement algorithm with group-based normalized rewards. However, the application of GRPO to Video Large Language Models (Video LLMs) has been less studied. In this paper, we explore GRPO for video LLMs and identify two primary issues that impede its effective learning: (1) reliance on safeguards, and (2) the vanishing advantage problem. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with our proposed Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation strategy. Reg-GRPO reformulates the GRPO objective as a regression task, directly predicting the advantage in GRPO. This design eliminates the need for safeguards like clipping and min functions, thereby facilitating more direct policy guidance by aligning the model with the advantage values. We also design the difficulty-aware data augmentation strategy that dynamically augments training samples at solvable difficulty levels, fostering diverse and informative reward signals. Our comprehensive experiments show that DeepVideo-R1 significantly improves video reasoning performance across multiple video reasoning benchmarks.

  • 4 authors
·
Jun 9 3

Region-Constraint In-Context Generation for Instructional Video Editing

The In-context generation paradigm recently has demonstrated strong power in instructional image editing with both data efficiency and synthesis quality. Nevertheless, shaping such in-context learning for instruction-based video editing is not trivial. Without specifying editing regions, the results can suffer from the problem of inaccurate editing regions and the token interference between editing and non-editing areas during denoising. To address these, we present ReCo, a new instructional video editing paradigm that novelly delves into constraint modeling between editing and non-editing regions during in-context generation. Technically, ReCo width-wise concatenates source and target video for joint denoising. To calibrate video diffusion learning, ReCo capitalizes on two regularization terms, i.e., latent and attention regularization, conducting on one-step backward denoised latents and attention maps, respectively. The former increases the latent discrepancy of the editing region between source and target videos while reducing that of non-editing areas, emphasizing the modification on editing area and alleviating outside unexpected content generation. The latter suppresses the attention of tokens in the editing region to the tokens in counterpart of the source video, thereby mitigating their interference during novel object generation in target video. Furthermore, we propose a large-scale, high-quality video editing dataset, i.e., ReCo-Data, comprising 500K instruction-video pairs to benefit model training. Extensive experiments conducted on four major instruction-based video editing tasks demonstrate the superiority of our proposal.

Generative Regression Based Watch Time Prediction for Short-Video Recommendation

Watch time prediction (WTP) has emerged as a pivotal task in short video recommendation systems, designed to quantify user engagement through continuous interaction modeling. Predicting users' watch times on videos often encounters fundamental challenges, including wide value ranges and imbalanced data distributions, which can lead to significant estimation bias when directly applying regression techniques. Recent studies have attempted to address these issues by converting the continuous watch time estimation into an ordinal regression task. While these methods demonstrate partial effectiveness, they exhibit notable limitations: (1) the discretization process frequently relies on bucket partitioning, inherently reducing prediction flexibility and accuracy and (2) the interdependencies among different partition intervals remain underutilized, missing opportunities for effective error correction. Inspired by language modeling paradigms, we propose a novel Generative Regression (GR) framework that reformulates WTP as a sequence generation task. Our approach employs structural discretization to enable nearly lossless value reconstruction while maintaining prediction fidelity. Through carefully designed vocabulary construction and label encoding schemes, each watch time is bijectively mapped to a token sequence. To mitigate the training-inference discrepancy caused by teacher-forcing, we introduce a curriculum learning with embedding mixup strategy that gradually transitions from guided to free-generation modes. We evaluate our method against state-of-the-art approaches on two public datasets and one industrial dataset. We also perform online A/B testing on the Kuaishou App to confirm the real-world effectiveness. The results conclusively show that GR outperforms existing techniques significantly.

  • 9 authors
·
Dec 28, 2024

SEE4D: Pose-Free 4D Generation via Auto-Regressive Video Inpainting

Immersive applications call for synthesizing spatiotemporal 4D content from casual videos without costly 3D supervision. Existing video-to-4D methods typically rely on manually annotated camera poses, which are labor-intensive and brittle for in-the-wild footage. Recent warp-then-inpaint approaches mitigate the need for pose labels by warping input frames along a novel camera trajectory and using an inpainting model to fill missing regions, thereby depicting the 4D scene from diverse viewpoints. However, this trajectory-to-trajectory formulation often entangles camera motion with scene dynamics and complicates both modeling and inference. We introduce SEE4D, a pose-free, trajectory-to-camera framework that replaces explicit trajectory prediction with rendering to a bank of fixed virtual cameras, thereby separating camera control from scene modeling. A view-conditional video inpainting model is trained to learn a robust geometry prior by denoising realistically synthesized warped images and to inpaint occluded or missing regions across virtual viewpoints, eliminating the need for explicit 3D annotations. Building on this inpainting core, we design a spatiotemporal autoregressive inference pipeline that traverses virtual-camera splines and extends videos with overlapping windows, enabling coherent generation at bounded per-step complexity. We validate See4D on cross-view video generation and sparse reconstruction benchmarks. Across quantitative metrics and qualitative assessments, our method achieves superior generalization and improved performance relative to pose- or trajectory-conditioned baselines, advancing practical 4D world modeling from casual videos.

  • 11 authors
·
Oct 30

AR-Diffusion: Asynchronous Video Generation with Auto-Regressive Diffusion

The task of video generation requires synthesizing visually realistic and temporally coherent video frames. Existing methods primarily use asynchronous auto-regressive models or synchronous diffusion models to address this challenge. However, asynchronous auto-regressive models often suffer from inconsistencies between training and inference, leading to issues such as error accumulation, while synchronous diffusion models are limited by their reliance on rigid sequence length. To address these issues, we introduce Auto-Regressive Diffusion (AR-Diffusion), a novel model that combines the strengths of auto-regressive and diffusion models for flexible, asynchronous video generation. Specifically, our approach leverages diffusion to gradually corrupt video frames in both training and inference, reducing the discrepancy between these phases. Inspired by auto-regressive generation, we incorporate a non-decreasing constraint on the corruption timesteps of individual frames, ensuring that earlier frames remain clearer than subsequent ones. This setup, together with temporal causal attention, enables flexible generation of videos with varying lengths while preserving temporal coherence. In addition, we design two specialized timestep schedulers: the FoPP scheduler for balanced timestep sampling during training, and the AD scheduler for flexible timestep differences during inference, supporting both synchronous and asynchronous generation. Extensive experiments demonstrate the superiority of our proposed method, which achieves competitive and state-of-the-art results across four challenging benchmarks.

  • 10 authors
·
Mar 10

Self-alignment of Large Video Language Models with Refined Regularized Preference Optimization

Despite recent advances in Large Video Language Models (LVLMs), they still struggle with fine-grained temporal understanding, hallucinate, and often make simple mistakes on even simple video question-answering tasks, all of which pose significant challenges to their safe and reliable deployment in real-world applications. To address these limitations, we propose a self-alignment framework that enables LVLMs to learn from their own errors. Our proposed framework first obtains a training set of preferred and non-preferred response pairs, where non-preferred responses are generated by incorporating common error patterns that often occur due to inadequate spatio-temporal understanding, spurious correlations between co-occurring concepts, and over-reliance on linguistic cues while neglecting the vision modality, among others. To facilitate self-alignment of LVLMs with the constructed preferred and non-preferred response pairs, we introduce Refined Regularized Preference Optimization (RRPO), a novel preference optimization method that utilizes sub-sequence-level refined rewards and token-wise KL regularization to address the limitations of Direct Preference Optimization (DPO). We demonstrate that RRPO achieves more precise alignment and more stable training compared to DPO. Our experiments and analysis validate the effectiveness of our approach across diverse video tasks, including video hallucination, short- and long-video understanding, and fine-grained temporal reasoning.

  • 2 authors
·
Apr 16 2

ART$\boldsymbol{\cdot}$V: Auto-Regressive Text-to-Video Generation with Diffusion Models

We present ARTcdotV, an efficient framework for auto-regressive video generation with diffusion models. Unlike existing methods that generate entire videos in one-shot, ARTcdotV generates a single frame at a time, conditioned on the previous ones. The framework offers three distinct advantages. First, it only learns simple continual motions between adjacent frames, therefore avoiding modeling complex long-range motions that require huge training data. Second, it preserves the high-fidelity generation ability of the pre-trained image diffusion models by making only minimal network modifications. Third, it can generate arbitrarily long videos conditioned on a variety of prompts such as text, image or their combinations, making it highly versatile and flexible. To combat the common drifting issue in AR models, we propose masked diffusion model which implicitly learns which information can be drawn from reference images rather than network predictions, in order to reduce the risk of generating inconsistent appearances that cause drifting. Moreover, we further enhance generation coherence by conditioning it on the initial frame, which typically contains minimal noise. This is particularly useful for long video generation. When trained for only two weeks on four GPUs, ARTcdotV already can generate videos with natural motions, rich details and a high level of aesthetic quality. Besides, it enables various appealing applications, e.g., composing a long video from multiple text prompts.

  • 13 authors
·
Nov 30, 2023

Efficient Video Action Detection with Token Dropout and Context Refinement

Streaming video clips with large-scale video tokens impede vision transformers (ViTs) for efficient recognition, especially in video action detection where sufficient spatiotemporal representations are required for precise actor identification. In this work, we propose an end-to-end framework for efficient video action detection (EVAD) based on vanilla ViTs. Our EVAD consists of two specialized designs for video action detection. First, we propose a spatiotemporal token dropout from a keyframe-centric perspective. In a video clip, we maintain all tokens from its keyframe, preserve tokens relevant to actor motions from other frames, and drop out the remaining tokens in this clip. Second, we refine scene context by leveraging remaining tokens for better recognizing actor identities. The region of interest (RoI) in our action detector is expanded into temporal domain. The captured spatiotemporal actor identity representations are refined via scene context in a decoder with the attention mechanism. These two designs make our EVAD efficient while maintaining accuracy, which is validated on three benchmark datasets (i.e., AVA, UCF101-24, JHMDB). Compared to the vanilla ViT backbone, our EVAD reduces the overall GFLOPs by 43% and improves real-time inference speed by 40% with no performance degradation. Moreover, even at similar computational costs, our EVAD can improve the performance by 1.1 mAP with higher resolution inputs. Code is available at https://github.com/MCG-NJU/EVAD.

  • 5 authors
·
Apr 17, 2023

MTV-Inpaint: Multi-Task Long Video Inpainting

Video inpainting involves modifying local regions within a video, ensuring spatial and temporal consistency. Most existing methods focus primarily on scene completion (i.e., filling missing regions) and lack the capability to insert new objects into a scene in a controllable manner. Fortunately, recent advancements in text-to-video (T2V) diffusion models pave the way for text-guided video inpainting. However, directly adapting T2V models for inpainting remains limited in unifying completion and insertion tasks, lacks input controllability, and struggles with long videos, thereby restricting their applicability and flexibility. To address these challenges, we propose MTV-Inpaint, a unified multi-task video inpainting framework capable of handling both traditional scene completion and novel object insertion tasks. To unify these distinct tasks, we design a dual-branch spatial attention mechanism in the T2V diffusion U-Net, enabling seamless integration of scene completion and object insertion within a single framework. In addition to textual guidance, MTV-Inpaint supports multimodal control by integrating various image inpainting models through our proposed image-to-video (I2V) inpainting mode. Additionally, we propose a two-stage pipeline that combines keyframe inpainting with in-between frame propagation, enabling MTV-Inpaint to effectively handle long videos with hundreds of frames. Extensive experiments demonstrate that MTV-Inpaint achieves state-of-the-art performance in both scene completion and object insertion tasks. Furthermore, it demonstrates versatility in derived applications such as multi-modal inpainting, object editing, removal, image object brush, and the ability to handle long videos. Project page: https://mtv-inpaint.github.io/.

  • 7 authors
·
Mar 14 2

VideoRepair: Improving Text-to-Video Generation via Misalignment Evaluation and Localized Refinement

Recent text-to-video (T2V) diffusion models have demonstrated impressive generation capabilities across various domains. However, these models often generate videos that have misalignments with text prompts, especially when the prompts describe complex scenes with multiple objects and attributes. To address this, we introduce VideoRepair, a novel model-agnostic, training-free video refinement framework that automatically identifies fine-grained text-video misalignments and generates explicit spatial and textual feedback, enabling a T2V diffusion model to perform targeted, localized refinements. VideoRepair consists of four stages: In (1) video evaluation, we detect misalignments by generating fine-grained evaluation questions and answering those questions with MLLM. In (2) refinement planning, we identify accurately generated objects and then create localized prompts to refine other areas in the video. Next, in (3) region decomposition, we segment the correctly generated area using a combined grounding module. We regenerate the video by adjusting the misaligned regions while preserving the correct regions in (4) localized refinement. On two popular video generation benchmarks (EvalCrafter and T2V-CompBench), VideoRepair substantially outperforms recent baselines across various text-video alignment metrics. We provide a comprehensive analysis of VideoRepair components and qualitative examples.

  • 4 authors
·
Nov 22, 2024 3

Dimension-Reduction Attack! Video Generative Models are Experts on Controllable Image Synthesis

Video generative models can be regarded as world simulators due to their ability to capture dynamic, continuous changes inherent in real-world environments. These models integrate high-dimensional information across visual, temporal, spatial, and causal dimensions, enabling predictions of subjects in various status. A natural and valuable research direction is to explore whether a fully trained video generative model in high-dimensional space can effectively support lower-dimensional tasks such as controllable image generation. In this work, we propose a paradigm for video-to-image knowledge compression and task adaptation, termed Dimension-Reduction Attack (DRA-Ctrl), which utilizes the strengths of video models, including long-range context modeling and flatten full-attention, to perform various generation tasks. Specially, to address the challenging gap between continuous video frames and discrete image generation, we introduce a mixup-based transition strategy that ensures smooth adaptation. Moreover, we redesign the attention structure with a tailored masking mechanism to better align text prompts with image-level control. Experiments across diverse image generation tasks, such as subject-driven and spatially conditioned generation, show that repurposed video models outperform those trained directly on images. These results highlight the untapped potential of large-scale video generators for broader visual applications. DRA-Ctrl provides new insights into reusing resource-intensive video models and lays foundation for future unified generative models across visual modalities. The project page is https://dra-ctrl-2025.github.io/DRA-Ctrl/.

  • 7 authors
·
May 29

InterAnimate: Taming Region-aware Diffusion Model for Realistic Human Interaction Animation

Recent video generation research has focused heavily on isolated actions, leaving interactive motions-such as hand-face interactions-largely unexamined. These interactions are essential for emerging biometric authentication systems, which rely on interactive motion-based anti-spoofing approaches. From a security perspective, there is a growing need for large-scale, high-quality interactive videos to train and strengthen authentication models. In this work, we introduce a novel paradigm for animating realistic hand-face interactions. Our approach simultaneously learns spatio-temporal contact dynamics and biomechanically plausible deformation effects, enabling natural interactions where hand movements induce anatomically accurate facial deformations while maintaining collision-free contact. To facilitate this research, we present InterHF, a large-scale hand-face interaction dataset featuring 18 interaction patterns and 90,000 annotated videos. Additionally, we propose InterAnimate, a region-aware diffusion model designed specifically for interaction animation. InterAnimate leverages learnable spatial and temporal latents to effectively capture dynamic interaction priors and integrates a region-aware interaction mechanism that injects these priors into the denoising process. To the best of our knowledge, this work represents the first large-scale effort to systematically study human hand-face interactions. Qualitative and quantitative results show InterAnimate produces highly realistic animations, setting a new benchmark. Code and data will be made public to advance research.

  • 13 authors
·
Apr 15

A Semi-Self-Supervised Approach for Dense-Pattern Video Object Segmentation

Video object segmentation (VOS) -- predicting pixel-level regions for objects within each frame of a video -- is particularly challenging in agricultural scenarios, where videos of crops include hundreds of small, dense, and occluded objects (stems, leaves, flowers, pods) that sway and move unpredictably in the wind. Supervised training is the state-of-the-art for VOS, but it requires large, pixel-accurate, human-annotated videos, which are costly to produce for videos with many densely packed objects in each frame. To address these challenges, we proposed a semi-self-supervised spatiotemporal approach for dense-VOS (DVOS) using a diffusion-based method through multi-task (reconstruction and segmentation) learning. We train the model first with synthetic data that mimics the camera and object motion of real videos and then with pseudo-labeled videos. We evaluate our DVOS method for wheat head segmentation from a diverse set of videos (handheld, drone-captured, different field locations, and different growth stages -- spanning from Boot-stage to Wheat-mature and Harvest-ready). Despite using only a few manually annotated video frames, the proposed approach yielded a high-performing model, achieving a Dice score of 0.79 when tested on a drone-captured external test set. While our method was evaluated on wheat head segmentation, it can be extended to other crops and domains, such as crowd analysis or microscopic image analysis.

  • 4 authors
·
Jun 7, 2024

KVQ: Boosting Video Quality Assessment via Saliency-guided Local Perception

Video Quality Assessment (VQA), which intends to predict the perceptual quality of videos, has attracted increasing attention. Due to factors like motion blur or specific distortions, the quality of different regions in a video varies. Recognizing the region-wise local quality within a video is beneficial for assessing global quality and can guide us in adopting fine-grained enhancement or transcoding strategies. Due to the heavy cost of annotating region-wise quality, the lack of ground truth constraints from relevant datasets further complicates the utilization of local perception. Inspired by the Human Visual System (HVS) that links global quality to the local texture of different regions and their visual saliency, we propose a Kaleidoscope Video Quality Assessment (KVQ) framework, which aims to effectively assess both saliency and local texture, thereby facilitating the assessment of global quality. Our framework extracts visual saliency and allocates attention using Fusion-Window Attention (FWA) while incorporating a Local Perception Constraint (LPC) to mitigate the reliance of regional texture perception on neighboring areas. KVQ obtains significant improvements across multiple scenarios on five VQA benchmarks compared to SOTA methods. Furthermore, to assess local perception, we establish a new Local Perception Visual Quality (LPVQ) dataset with region-wise annotations. Experimental results demonstrate the capability of KVQ in perceiving local distortions. KVQ models and the LPVQ dataset will be available at https://github.com/qyp2000/KVQ.

  • 6 authors
·
Mar 13

Video Depth without Video Models

Video depth estimation lifts monocular video clips to 3D by inferring dense depth at every frame. Recent advances in single-image depth estimation, brought about by the rise of large foundation models and the use of synthetic training data, have fueled a renewed interest in video depth. However, naively applying a single-image depth estimator to every frame of a video disregards temporal continuity, which not only leads to flickering but may also break when camera motion causes sudden changes in depth range. An obvious and principled solution would be to build on top of video foundation models, but these come with their own limitations; including expensive training and inference, imperfect 3D consistency, and stitching routines for the fixed-length (short) outputs. We take a step back and demonstrate how to turn a single-image latent diffusion model (LDM) into a state-of-the-art video depth estimator. Our model, which we call RollingDepth, has two main ingredients: (i) a multi-frame depth estimator that is derived from a single-image LDM and maps very short video snippets (typically frame triplets) to depth snippets. (ii) a robust, optimization-based registration algorithm that optimally assembles depth snippets sampled at various different frame rates back into a consistent video. RollingDepth is able to efficiently handle long videos with hundreds of frames and delivers more accurate depth videos than both dedicated video depth estimators and high-performing single-frame models. Project page: rollingdepth.github.io.

  • 8 authors
·
Nov 28, 2024 7

Follow-Your-Click: Open-domain Regional Image Animation via Short Prompts

Despite recent advances in image-to-video generation, better controllability and local animation are less explored. Most existing image-to-video methods are not locally aware and tend to move the entire scene. However, human artists may need to control the movement of different objects or regions. Additionally, current I2V methods require users not only to describe the target motion but also to provide redundant detailed descriptions of frame contents. These two issues hinder the practical utilization of current I2V tools. In this paper, we propose a practical framework, named Follow-Your-Click, to achieve image animation with a simple user click (for specifying what to move) and a short motion prompt (for specifying how to move). Technically, we propose the first-frame masking strategy, which significantly improves the video generation quality, and a motion-augmented module equipped with a short motion prompt dataset to improve the short prompt following abilities of our model. To further control the motion speed, we propose flow-based motion magnitude control to control the speed of target movement more precisely. Our framework has simpler yet precise user control and better generation performance than previous methods. Extensive experiments compared with 7 baselines, including both commercial tools and research methods on 8 metrics, suggest the superiority of our approach. Project Page: https://follow-your-click.github.io/

  • 11 authors
·
Mar 13, 2024 5

REGEN: Real-Time Photorealism Enhancement in Games via a Dual-Stage Generative Network Framework

Photorealism is an important aspect of modern video games since it can shape the player experience and simultaneously impact the immersion, narrative engagement, and visual fidelity. Although recent hardware technological breakthroughs, along with state-of-the-art rendering technologies, have significantly improved the visual realism of video games, achieving true photorealism in dynamic environments at real-time frame rates still remains a major challenge due to the tradeoff between visual quality and performance. In this short paper, we present a novel approach for enhancing the photorealism of rendered game frames using generative adversarial networks. To this end, we propose Real-time photorealism Enhancement in Games via a dual-stage gEnerative Network framework (REGEN), which employs a robust unpaired image-to-image translation model to produce semantically consistent photorealistic frames that transform the problem into a simpler paired image-to-image translation task. This enables training with a lightweight method that can achieve real-time inference time without compromising visual quality. We demonstrate the effectiveness of our framework on Grand Theft Auto V, showing that the approach achieves visual results comparable to the ones produced by the robust unpaired Im2Im method while improving inference speed by 32.14 times. Our findings also indicate that the results outperform the photorealism-enhanced frames produced by directly training a lightweight unpaired Im2Im translation method to translate the video game frames towards the visual characteristics of real-world images. Code, pre-trained models, and demos for this work are available at: https://github.com/stefanos50/REGEN.

  • 2 authors
·
Aug 23 2

Short-video Propagation Influence Rating: A New Real-world Dataset and A New Large Graph Model

Short-video platforms have gained immense popularity, captivating the interest of millions, if not billions, of users globally. Recently, researchers have highlighted the significance of analyzing the propagation of short-videos, which typically involves discovering commercial values, public opinions, user behaviors, etc. This paper proposes a new Short-video Propagation Influence Rating (SPIR) task and aims to promote SPIR from both the dataset and method perspectives. First, we propose a new Cross-platform Short-Video (XS-Video) dataset, which aims to provide a large-scale and real-world short-video propagation network across various platforms to facilitate the research on short-video propagation. Our XS-Video dataset includes 117,720 videos, 381,926 samples, and 535 topics across 5 biggest Chinese platforms, annotated with the propagation influence from level 0 to 9. To the best of our knowledge, this is the first large-scale short-video dataset that contains cross-platform data or provides all of the views, likes, shares, collects, fans, comments, and comment content. Second, we propose a Large Graph Model (LGM) named NetGPT, based on a novel three-stage training mechanism, to bridge heterogeneous graph-structured data with the powerful reasoning ability and knowledge of Large Language Models (LLMs). Our NetGPT can comprehend and analyze the short-video propagation graph, enabling it to predict the long-term propagation influence of short-videos. Comprehensive experimental results evaluated by both classification and regression metrics on our XS-Video dataset indicate the superiority of our method for SPIR.

  • 4 authors
·
Mar 31

Improving Video Generation with Human Feedback

Video generation has achieved significant advances through rectified flow techniques, but issues like unsmooth motion and misalignment between videos and prompts persist. In this work, we develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model. Specifically, we begin by constructing a large-scale human preference dataset focused on modern video generation models, incorporating pairwise annotations across multi-dimensions. We then introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy. From a unified reinforcement learning perspective aimed at maximizing reward with KL regularization, we introduce three alignment algorithms for flow-based models by extending those from diffusion models. These include two training-time strategies: direct preference optimization for flow (Flow-DPO) and reward weighted regression for flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies reward guidance directly to noisy videos. Experimental results indicate that VideoReward significantly outperforms existing reward models, and Flow-DPO demonstrates superior performance compared to both Flow-RWR and standard supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom weights to multiple objectives during inference, meeting personalized video quality needs. Project page: https://gongyeliu.github.io/videoalign.

  • 18 authors
·
Jan 23 5

Learning Video Generation for Robotic Manipulation with Collaborative Trajectory Control

Recent advances in video diffusion models have demonstrated strong potential for generating robotic decision-making data, with trajectory conditions further enabling fine-grained control. However, existing trajectory-based methods primarily focus on individual object motion and struggle to capture multi-object interaction crucial in complex robotic manipulation. This limitation arises from multi-feature entanglement in overlapping regions, which leads to degraded visual fidelity. To address this, we present RoboMaster, a novel framework that models inter-object dynamics through a collaborative trajectory formulation. Unlike prior methods that decompose objects, our core is to decompose the interaction process into three sub-stages: pre-interaction, interaction, and post-interaction. Each stage is modeled using the feature of the dominant object, specifically the robotic arm in the pre- and post-interaction phases and the manipulated object during interaction, thereby mitigating the drawback of multi-object feature fusion present during interaction in prior work. To further ensure subject semantic consistency throughout the video, we incorporate appearance- and shape-aware latent representations for objects. Extensive experiments on the challenging Bridge V2 dataset, as well as in-the-wild evaluation, demonstrate that our method outperforms existing approaches, establishing new state-of-the-art performance in trajectory-controlled video generation for robotic manipulation.

VideoPainter: Any-length Video Inpainting and Editing with Plug-and-Play Context Control

Video inpainting, which aims to restore corrupted video content, has experienced substantial progress. Despite these advances, existing methods, whether propagating unmasked region pixels through optical flow and receptive field priors, or extending image-inpainting models temporally, face challenges in generating fully masked objects or balancing the competing objectives of background context preservation and foreground generation in one model, respectively. To address these limitations, we propose a novel dual-stream paradigm VideoPainter that incorporates an efficient context encoder (comprising only 6% of the backbone parameters) to process masked videos and inject backbone-aware background contextual cues to any pre-trained video DiT, producing semantically consistent content in a plug-and-play manner. This architectural separation significantly reduces the model's learning complexity while enabling nuanced integration of crucial background context. We also introduce a novel target region ID resampling technique that enables any-length video inpainting, greatly enhancing our practical applicability. Additionally, we establish a scalable dataset pipeline leveraging current vision understanding models, contributing VPData and VPBench to facilitate segmentation-based inpainting training and assessment, the largest video inpainting dataset and benchmark to date with over 390K diverse clips. Using inpainting as a pipeline basis, we also explore downstream applications including video editing and video editing pair data generation, demonstrating competitive performance and significant practical potential. Extensive experiments demonstrate VideoPainter's superior performance in both any-length video inpainting and editing, across eight key metrics, including video quality, mask region preservation, and textual coherence.

  • 7 authors
·
Mar 7 3

GenDoP: Auto-regressive Camera Trajectory Generation as a Director of Photography

Camera trajectory design plays a crucial role in video production, serving as a fundamental tool for conveying directorial intent and enhancing visual storytelling. In cinematography, Directors of Photography meticulously craft camera movements to achieve expressive and intentional framing. However, existing methods for camera trajectory generation remain limited: Traditional approaches rely on geometric optimization or handcrafted procedural systems, while recent learning-based methods often inherit structural biases or lack textual alignment, constraining creative synthesis. In this work, we introduce an auto-regressive model inspired by the expertise of Directors of Photography to generate artistic and expressive camera trajectories. We first introduce DataDoP, a large-scale multi-modal dataset containing 29K real-world shots with free-moving camera trajectories, depth maps, and detailed captions in specific movements, interaction with the scene, and directorial intent. Thanks to the comprehensive and diverse database, we further train an auto-regressive, decoder-only Transformer for high-quality, context-aware camera movement generation based on text guidance and RGBD inputs, named GenDoP. Extensive experiments demonstrate that compared to existing methods, GenDoP offers better controllability, finer-grained trajectory adjustments, and higher motion stability. We believe our approach establishes a new standard for learning-based cinematography, paving the way for future advancements in camera control and filmmaking. Our project website: https://kszpxxzmc.github.io/GenDoP/.

  • 6 authors
·
Apr 9 2

DreamVVT: Mastering Realistic Video Virtual Try-On in the Wild via a Stage-Wise Diffusion Transformer Framework

Video virtual try-on (VVT) technology has garnered considerable academic interest owing to its promising applications in e-commerce advertising and entertainment. However, most existing end-to-end methods rely heavily on scarce paired garment-centric datasets and fail to effectively leverage priors of advanced visual models and test-time inputs, making it challenging to accurately preserve fine-grained garment details and maintain temporal consistency in unconstrained scenarios. To address these challenges, we propose DreamVVT, a carefully designed two-stage framework built upon Diffusion Transformers (DiTs), which is inherently capable of leveraging diverse unpaired human-centric data to enhance adaptability in real-world scenarios. To further leverage prior knowledge from pretrained models and test-time inputs, in the first stage, we sample representative frames from the input video and utilize a multi-frame try-on model integrated with a vision-language model (VLM), to synthesize high-fidelity and semantically consistent keyframe try-on images. These images serve as complementary appearance guidance for subsequent video generation. In the second stage, skeleton maps together with fine-grained motion and appearance descriptions are extracted from the input content, and these along with the keyframe try-on images are then fed into a pretrained video generation model enhanced with LoRA adapters. This ensures long-term temporal coherence for unseen regions and enables highly plausible dynamic motions. Extensive quantitative and qualitative experiments demonstrate that DreamVVT surpasses existing methods in preserving detailed garment content and temporal stability in real-world scenarios. Our project page https://virtu-lab.github.io/

LoRA-Edit: Controllable First-Frame-Guided Video Editing via Mask-Aware LoRA Fine-Tuning

Video editing using diffusion models has achieved remarkable results in generating high-quality edits for videos. However, current methods often rely on large-scale pretraining, limiting flexibility for specific edits. First-frame-guided editing provides control over the first frame, but lacks flexibility over subsequent frames. To address this, we propose a mask-based LoRA (Low-Rank Adaptation) tuning method that adapts pretrained Image-to-Video (I2V) models for flexible video editing. Our approach preserves background regions while enabling controllable edits propagation. This solution offers efficient and adaptable video editing without altering the model architecture. To better steer this process, we incorporate additional references, such as alternate viewpoints or representative scene states, which serve as visual anchors for how content should unfold. We address the control challenge using a mask-driven LoRA tuning strategy that adapts a pre-trained image-to-video model to the editing context. The model must learn from two distinct sources: the input video provides spatial structure and motion cues, while reference images offer appearance guidance. A spatial mask enables region-specific learning by dynamically modulating what the model attends to, ensuring that each area draws from the appropriate source. Experimental results show our method achieves superior video editing performance compared to state-of-the-art methods.

  • 6 authors
·
Jun 11 3

Dense Video Understanding with Gated Residual Tokenization

High temporal resolution is essential for capturing fine-grained details in video understanding. However, current video large language models (VLLMs) and benchmarks mostly rely on low-frame-rate sampling, such as uniform sampling or keyframe selection, discarding dense temporal information. This compromise avoids the high cost of tokenizing every frame, which otherwise leads to redundant computation and linear token growth as video length increases. While this trade-off works for slowly changing content, it fails for tasks like lecture comprehension, where information appears in nearly every frame and requires precise temporal alignment. To address this gap, we introduce Dense Video Understanding (DVU), which enables high-FPS video comprehension by reducing both tokenization time and token overhead. Existing benchmarks are also limited, as their QA pairs focus on coarse content changes. We therefore propose DIVE (Dense Information Video Evaluation), the first benchmark designed for dense temporal reasoning. To make DVU practical, we present Gated Residual Tokenization (GRT), a two-stage framework: (1) Motion-Compensated Inter-Gated Tokenization uses pixel-level motion estimation to skip static regions during tokenization, achieving sub-linear growth in token count and compute. (2) Semantic-Scene Intra-Tokenization Merging fuses tokens across static regions within a scene, further reducing redundancy while preserving dynamic semantics. Experiments on DIVE show that GRT outperforms larger VLLM baselines and scales positively with FPS. These results highlight the importance of dense temporal information and demonstrate that GRT enables efficient, scalable high-FPS video understanding.

  • 5 authors
·
Sep 17

Fine-grained Audible Video Description

We explore a new task for audio-visual-language modeling called fine-grained audible video description (FAVD). It aims to provide detailed textual descriptions for the given audible videos, including the appearance and spatial locations of each object, the actions of moving objects, and the sounds in videos. Existing visual-language modeling tasks often concentrate on visual cues in videos while undervaluing the language and audio modalities. On the other hand, FAVD requires not only audio-visual-language modeling skills but also paragraph-level language generation abilities. We construct the first fine-grained audible video description benchmark (FAVDBench) to facilitate this research. For each video clip, we first provide a one-sentence summary of the video, ie, the caption, followed by 4-6 sentences describing the visual details and 1-2 audio-related descriptions at the end. The descriptions are provided in both English and Chinese. We create two new metrics for this task: an EntityScore to gauge the completeness of entities in the visual descriptions, and an AudioScore to assess the audio descriptions. As a preliminary approach to this task, we propose an audio-visual-language transformer that extends existing video captioning model with an additional audio branch. We combine the masked language modeling and auto-regressive language modeling losses to optimize our model so that it can produce paragraph-level descriptions. We illustrate the efficiency of our model in audio-visual-language modeling by evaluating it against the proposed benchmark using both conventional captioning metrics and our proposed metrics. We further put our benchmark to the test in video generation models, demonstrating that employing fine-grained video descriptions can create more intricate videos than using captions.

  • 12 authors
·
Mar 27, 2023

Fine-tuned CLIP Models are Efficient Video Learners

Large-scale multi-modal training with image-text pairs imparts strong generalization to CLIP model. Since training on a similar scale for videos is infeasible, recent approaches focus on the effective transfer of image-based CLIP to the video domain. In this pursuit, new parametric modules are added to learn temporal information and inter-frame relationships which require meticulous design efforts. Furthermore, when the resulting models are learned on videos, they tend to overfit on the given task distribution and lack in generalization aspect. This begs the following question: How to effectively transfer image-level CLIP representations to videos? In this work, we show that a simple Video Fine-tuned CLIP (ViFi-CLIP) baseline is generally sufficient to bridge the domain gap from images to videos. Our qualitative analysis illustrates that the frame-level processing from CLIP image-encoder followed by feature pooling and similarity matching with corresponding text embeddings helps in implicitly modeling the temporal cues within ViFi-CLIP. Such fine-tuning helps the model to focus on scene dynamics, moving objects and inter-object relationships. For low-data regimes where full fine-tuning is not viable, we propose a `bridge and prompt' approach that first uses fine-tuning to bridge the domain gap and then learns prompts on language and vision side to adapt CLIP representations. We extensively evaluate this simple yet strong baseline on zero-shot, base-to-novel generalization, few-shot and fully supervised settings across five video benchmarks. Our code is available at https://github.com/muzairkhattak/ViFi-CLIP.

  • 5 authors
·
Dec 6, 2022

MagicProp: Diffusion-based Video Editing via Motion-aware Appearance Propagation

This paper addresses the issue of modifying the visual appearance of videos while preserving their motion. A novel framework, named MagicProp, is proposed, which disentangles the video editing process into two stages: appearance editing and motion-aware appearance propagation. In the first stage, MagicProp selects a single frame from the input video and applies image-editing techniques to modify the content and/or style of the frame. The flexibility of these techniques enables the editing of arbitrary regions within the frame. In the second stage, MagicProp employs the edited frame as an appearance reference and generates the remaining frames using an autoregressive rendering approach. To achieve this, a diffusion-based conditional generation model, called PropDPM, is developed, which synthesizes the target frame by conditioning on the reference appearance, the target motion, and its previous appearance. The autoregressive editing approach ensures temporal consistency in the resulting videos. Overall, MagicProp combines the flexibility of image-editing techniques with the superior temporal consistency of autoregressive modeling, enabling flexible editing of object types and aesthetic styles in arbitrary regions of input videos while maintaining good temporal consistency across frames. Extensive experiments in various video editing scenarios demonstrate the effectiveness of MagicProp.

  • 5 authors
·
Sep 2, 2023

CoNo: Consistency Noise Injection for Tuning-free Long Video Diffusion

Tuning-free long video diffusion has been proposed to generate extended-duration videos with enriched content by reusing the knowledge from pre-trained short video diffusion model without retraining. However, most works overlook the fine-grained long-term video consistency modeling, resulting in limited scene consistency (i.e., unreasonable object or background transitions), especially with multiple text inputs. To mitigate this, we propose the Consistency Noise Injection, dubbed CoNo, which introduces the "look-back" mechanism to enhance the fine-grained scene transition between different video clips, and designs the long-term consistency regularization to eliminate the content shifts when extending video contents through noise prediction. In particular, the "look-back" mechanism breaks the noise scheduling process into three essential parts, where one internal noise prediction part is injected into two video-extending parts, intending to achieve a fine-grained transition between two video clips. The long-term consistency regularization focuses on explicitly minimizing the pixel-wise distance between the predicted noises of the extended video clip and the original one, thereby preventing abrupt scene transitions. Extensive experiments have shown the effectiveness of the above strategies by performing long-video generation under both single- and multi-text prompt conditions. The project has been available in https://wxrui182.github.io/CoNo.github.io/.

  • 3 authors
·
Jun 7, 2024

CV-VAE: A Compatible Video VAE for Latent Generative Video Models

Spatio-temporal compression of videos, utilizing networks such as Variational Autoencoders (VAE), plays a crucial role in OpenAI's SORA and numerous other video generative models. For instance, many LLM-like video models learn the distribution of discrete tokens derived from 3D VAEs within the VQVAE framework, while most diffusion-based video models capture the distribution of continuous latent extracted by 2D VAEs without quantization. The temporal compression is simply realized by uniform frame sampling which results in unsmooth motion between consecutive frames. Currently, there lacks of a commonly used continuous video (3D) VAE for latent diffusion-based video models in the research community. Moreover, since current diffusion-based approaches are often implemented using pre-trained text-to-image (T2I) models, directly training a video VAE without considering the compatibility with existing T2I models will result in a latent space gap between them, which will take huge computational resources for training to bridge the gap even with the T2I models as initialization. To address this issue, we propose a method for training a video VAE of latent video models, namely CV-VAE, whose latent space is compatible with that of a given image VAE, e.g., image VAE of Stable Diffusion (SD). The compatibility is achieved by the proposed novel latent space regularization, which involves formulating a regularization loss using the image VAE. Benefiting from the latent space compatibility, video models can be trained seamlessly from pre-trained T2I or video models in a truly spatio-temporally compressed latent space, rather than simply sampling video frames at equal intervals. With our CV-VAE, existing video models can generate four times more frames with minimal finetuning. Extensive experiments are conducted to demonstrate the effectiveness of the proposed video VAE.

  • 8 authors
·
May 30, 2024

PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images

We present PyMAF-X, a regression-based approach to recovering parametric full-body models from monocular images. This task is very challenging since minor parametric deviation may lead to noticeable misalignment between the estimated mesh and the input image. Moreover, when integrating part-specific estimations into the full-body model, existing solutions tend to either degrade the alignment or produce unnatural wrist poses. To address these issues, we propose a Pyramidal Mesh Alignment Feedback (PyMAF) loop in our regression network for well-aligned human mesh recovery and extend it as PyMAF-X for the recovery of expressive full-body models. The core idea of PyMAF is to leverage a feature pyramid and rectify the predicted parameters explicitly based on the mesh-image alignment status. Specifically, given the currently predicted parameters, mesh-aligned evidence will be extracted from finer-resolution features accordingly and fed back for parameter rectification. To enhance the alignment perception, an auxiliary dense supervision is employed to provide mesh-image correspondence guidance while spatial alignment attention is introduced to enable the awareness of the global contexts for our network. When extending PyMAF for full-body mesh recovery, an adaptive integration strategy is proposed in PyMAF-X to produce natural wrist poses while maintaining the well-aligned performance of the part-specific estimations. The efficacy of our approach is validated on several benchmark datasets for body, hand, face, and full-body mesh recovery, where PyMAF and PyMAF-X effectively improve the mesh-image alignment and achieve new state-of-the-art results. The project page with code and video results can be found at https://www.liuyebin.com/pymaf-x.

  • 7 authors
·
Jul 13, 2022