new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 16

RealTalk: Real-time and Realistic Audio-driven Face Generation with 3D Facial Prior-guided Identity Alignment Network

Person-generic audio-driven face generation is a challenging task in computer vision. Previous methods have achieved remarkable progress in audio-visual synchronization, but there is still a significant gap between current results and practical applications. The challenges are two-fold: 1) Preserving unique individual traits for achieving high-precision lip synchronization. 2) Generating high-quality facial renderings in real-time performance. In this paper, we propose a novel generalized audio-driven framework RealTalk, which consists of an audio-to-expression transformer and a high-fidelity expression-to-face renderer. In the first component, we consider both identity and intra-personal variation features related to speaking lip movements. By incorporating cross-modal attention on the enriched facial priors, we can effectively align lip movements with audio, thus attaining greater precision in expression prediction. In the second component, we design a lightweight facial identity alignment (FIA) module which includes a lip-shape control structure and a face texture reference structure. This novel design allows us to generate fine details in real-time, without depending on sophisticated and inefficient feature alignment modules. Our experimental results, both quantitative and qualitative, on public datasets demonstrate the clear advantages of our method in terms of lip-speech synchronization and generation quality. Furthermore, our method is efficient and requires fewer computational resources, making it well-suited to meet the needs of practical applications.

  • 10 authors
·
Jun 26, 2024 2

EPCFormer: Expression Prompt Collaboration Transformer for Universal Referring Video Object Segmentation

Audio-guided Video Object Segmentation (A-VOS) and Referring Video Object Segmentation (R-VOS) are two highly-related tasks, which both aim to segment specific objects from video sequences according to user-provided expression prompts. However, due to the challenges in modeling representations for different modalities, contemporary methods struggle to strike a balance between interaction flexibility and high-precision localization and segmentation. In this paper, we address this problem from two perspectives: the alignment representation of audio and text and the deep interaction among audio, text, and visual features. First, we propose a universal architecture, the Expression Prompt Collaboration Transformer, herein EPCFormer. Next, we propose an Expression Alignment (EA) mechanism for audio and text expressions. By introducing contrastive learning for audio and text expressions, the proposed EPCFormer realizes comprehension of the semantic equivalence between audio and text expressions denoting the same objects. Then, to facilitate deep interactions among audio, text, and video features, we introduce an Expression-Visual Attention (EVA) mechanism. The knowledge of video object segmentation in terms of the expression prompts can seamlessly transfer between the two tasks by deeply exploring complementary cues between text and audio. Experiments on well-recognized benchmarks demonstrate that our universal EPCFormer attains state-of-the-art results on both tasks. The source code of EPCFormer will be made publicly available at https://github.com/lab206/EPCFormer.

  • 7 authors
·
Aug 8, 2023

Sparks of Large Audio Models: A Survey and Outlook

This survey paper provides a comprehensive overview of the recent advancements and challenges in applying large language models to the field of audio signal processing. Audio processing, with its diverse signal representations and a wide range of sources--from human voices to musical instruments and environmental sounds--poses challenges distinct from those found in traditional Natural Language Processing scenarios. Nevertheless, Large Audio Models, epitomized by transformer-based architectures, have shown marked efficacy in this sphere. By leveraging massive amount of data, these models have demonstrated prowess in a variety of audio tasks, spanning from Automatic Speech Recognition and Text-To-Speech to Music Generation, among others. Notably, recently these Foundational Audio Models, like SeamlessM4T, have started showing abilities to act as universal translators, supporting multiple speech tasks for up to 100 languages without any reliance on separate task-specific systems. This paper presents an in-depth analysis of state-of-the-art methodologies regarding Foundational Large Audio Models, their performance benchmarks, and their applicability to real-world scenarios. We also highlight current limitations and provide insights into potential future research directions in the realm of Large Audio Models with the intent to spark further discussion, thereby fostering innovation in the next generation of audio-processing systems. Furthermore, to cope with the rapid development in this area, we will consistently update the relevant repository with relevant recent articles and their open-source implementations at https://github.com/EmulationAI/awesome-large-audio-models.

  • 11 authors
·
Aug 24, 2023

MOSS-Audio-Tokenizer: Scaling Audio Tokenizers for Future Audio Foundation Models

Discrete audio tokenizers are fundamental to empowering large language models with native audio processing and generation capabilities. Despite recent progress, existing approaches often rely on pretrained encoders, semantic distillation, or heterogeneous CNN-based architectures. These designs introduce fixed inductive biases that limit reconstruction fidelity and hinder effective scaling. In this paper, we argue that discrete audio tokenization should be learned fully end-to-end using a homogeneous and scalable architecture. To this end, we first propose CAT (Causal Audio Tokenizer with Transformer), a purely Transformer-based architecture that jointly optimizes the encoder, quantizer, and decoder from scratch for high-fidelity reconstruction. Building on the CAT architecture, we develop MOSS-Audio-Tokenizer, a large-scale audio tokenizer featuring 1.6 billion parameters, pre-trained on 3 million hours of diverse, general audio data. We show that this simple, fully end-to-end approach built from homogeneous, causal Transformer blocks scales gracefully and supports high-fidelity reconstruction across diverse audio domains. Across speech, sound, and music, MOSS-Audio-Tokenizer consistently outperforms prior codecs over a wide range of bitrates, while exhibiting predictable improvements with increased scale. Notably, leveraging the discrete tokens from our model, we develop the first purely autoregressive TTS model that surpasses prior non-autoregressive and cascaded systems. Furthermore, MOSS-Audio-Tokenizer enables competitive ASR performance without auxiliary encoders. Our findings position the CAT architecture as a unified, scalable interface for the next generation of native audio foundation models.

OpenMOSS-Team OpenMOSS
·
Feb 11 4

SSAST: Self-Supervised Audio Spectrogram Transformer

Recently, neural networks based purely on self-attention, such as the Vision Transformer (ViT), have been shown to outperform deep learning models constructed with convolutional neural networks (CNNs) on various vision tasks, thus extending the success of Transformers, which were originally developed for language processing, to the vision domain. A recent study showed that a similar methodology can also be applied to the audio domain. Specifically, the Audio Spectrogram Transformer (AST) achieves state-of-the-art results on various audio classification benchmarks. However, pure Transformer models tend to require more training data compared to CNNs, and the success of the AST relies on supervised pretraining that requires a large amount of labeled data and a complex training pipeline, thus limiting the practical usage of AST. This paper focuses on audio and speech classification, and aims to reduce the need for large amounts of labeled data for AST by leveraging self-supervised learning using unlabeled data. Specifically, we propose to pretrain the AST model with joint discriminative and generative masked spectrogram patch modeling (MSPM) using unlabeled audio from AudioSet and Librispeech. We evaluate our pretrained models on both audio and speech classification tasks including audio event classification, keyword spotting, emotion recognition, and speaker identification. The proposed self-supervised framework significantly boosts AST performance on all tasks, with an average improvement of 60.9%, leading to similar or even better results than a supervised pretrained AST. To the best of our knowledge, it is the first patch-based self-supervised learning framework in the audio and speech domain, and also the first self-supervised learning framework for AST.

  • 4 authors
·
Oct 19, 2021

ASiT: Local-Global Audio Spectrogram vIsion Transformer for Event Classification

Transformers, which were originally developed for natural language processing, have recently generated significant interest in the computer vision and audio communities due to their flexibility in learning long-range relationships. Constrained by the data hungry nature of transformers and the limited amount of labelled data, most transformer-based models for audio tasks are finetuned from ImageNet pretrained models, despite the huge gap between the domain of natural images and audio. This has motivated the research in self-supervised pretraining of audio transformers, which reduces the dependency on large amounts of labeled data and focuses on extracting concise representations of audio spectrograms. In this paper, we propose Local-Global Audio Spectrogram vIsion Transformer, namely ASiT, a novel self-supervised learning framework that captures local and global contextual information by employing group masked model learning and self-distillation. We evaluate our pretrained models on both audio and speech classification tasks, including audio event classification, keyword spotting, and speaker identification. We further conduct comprehensive ablation studies, including evaluations of different pretraining strategies. The proposed ASiT framework significantly boosts the performance on all tasks and sets a new state-of-the-art performance in five audio and speech classification tasks, outperforming recent methods, including the approaches that use additional datasets for pretraining.

  • 5 authors
·
Nov 23, 2022

CoNeTTE: An efficient Audio Captioning system leveraging multiple datasets with Task Embedding

Automated Audio Captioning (AAC) involves generating natural language descriptions of audio content, using encoder-decoder architectures. An audio encoder produces audio embeddings fed to a decoder, usually a Transformer decoder, for caption generation. In this work, we describe our model, which novelty, compared to existing models, lies in the use of a ConvNeXt architecture as audio encoder, adapted from the vision domain to audio classification. This model, called CNext-trans, achieved state-of-the-art scores on the AudioCaps (AC) dataset and performed competitively on Clotho (CL), while using four to forty times fewer parameters than existing models. We examine potential biases in the AC dataset due to its origin from AudioSet by investigating unbiased encoder's impact on performance. Using the well-known PANN's CNN14, for instance, as an unbiased encoder, we observed a 1.7% absolute reduction in SPIDEr score (where higher scores indicate better performance). To improve cross-dataset performance, we conducted experiments by combining multiple AAC datasets (AC, CL, MACS, WavCaps) for training. Although this strategy enhanced overall model performance across datasets, it still fell short compared to models trained specifically on a single target dataset, indicating the absence of a one-size-fits-all model. To mitigate performance gaps between datasets, we introduced a Task Embedding (TE) token, allowing the model to identify the source dataset for each input sample. We provide insights into the impact of these TEs on both the form (words) and content (sound event types) of the generated captions. The resulting model, named CoNeTTE, an unbiased CNext-trans model enriched with dataset-specific Task Embeddings, achieved SPIDEr scores of 44.1% and 30.5% on AC and CL, respectively. Code available: https://github.com/Labbeti/conette-audio-captioning.

  • 3 authors
·
Sep 1, 2023

Dawn of the transformer era in speech emotion recognition: closing the valence gap

Recent advances in transformer-based architectures which are pre-trained in self-supervised manner have shown great promise in several machine learning tasks. In the audio domain, such architectures have also been successfully utilised in the field of speech emotion recognition (SER). However, existing works have not evaluated the influence of model size and pre-training data on downstream performance, and have shown limited attention to generalisation, robustness, fairness, and efficiency. The present contribution conducts a thorough analysis of these aspects on several pre-trained variants of wav2vec 2.0 and HuBERT that we fine-tuned on the dimensions arousal, dominance, and valence of MSP-Podcast, while additionally using IEMOCAP and MOSI to test cross-corpus generalisation. To the best of our knowledge, we obtain the top performance for valence prediction without use of explicit linguistic information, with a concordance correlation coefficient (CCC) of .638 on MSP-Podcast. Furthermore, our investigations reveal that transformer-based architectures are more robust to small perturbations compared to a CNN-based baseline and fair with respect to biological sex groups, but not towards individual speakers. Finally, we are the first to show that their extraordinary success on valence is based on implicit linguistic information learnt during fine-tuning of the transformer layers, which explains why they perform on-par with recent multimodal approaches that explicitly utilise textual information. Our findings collectively paint the following picture: transformer-based architectures constitute the new state-of-the-art in SER, but further advances are needed to mitigate remaining robustness and individual speaker issues. To make our findings reproducible, we release the best performing model to the community.

  • 7 authors
·
Mar 14, 2022

AudioX: Diffusion Transformer for Anything-to-Audio Generation

Audio and music generation have emerged as crucial tasks in many applications, yet existing approaches face significant limitations: they operate in isolation without unified capabilities across modalities, suffer from scarce high-quality, multi-modal training data, and struggle to effectively integrate diverse inputs. In this work, we propose AudioX, a unified Diffusion Transformer model for Anything-to-Audio and Music Generation. Unlike previous domain-specific models, AudioX can generate both general audio and music with high quality, while offering flexible natural language control and seamless processing of various modalities including text, video, image, music, and audio. Its key innovation is a multi-modal masked training strategy that masks inputs across modalities and forces the model to learn from masked inputs, yielding robust and unified cross-modal representations. To address data scarcity, we curate two comprehensive datasets: vggsound-caps with 190K audio captions based on the VGGSound dataset, and V2M-caps with 6 million music captions derived from the V2M dataset. Extensive experiments demonstrate that AudioX not only matches or outperforms state-of-the-art specialized models, but also offers remarkable versatility in handling diverse input modalities and generation tasks within a unified architecture. The code and datasets will be available at https://zeyuet.github.io/AudioX/

  • 8 authors
·
Mar 13, 2025 3

Masked Audio Generation using a Single Non-Autoregressive Transformer

We introduce MAGNeT, a masked generative sequence modeling method that operates directly over several streams of audio tokens. Unlike prior work, MAGNeT is comprised of a single-stage, non-autoregressive transformer. During training, we predict spans of masked tokens obtained from a masking scheduler, while during inference we gradually construct the output sequence using several decoding steps. To further enhance the quality of the generated audio, we introduce a novel rescoring method in which, we leverage an external pre-trained model to rescore and rank predictions from MAGNeT, which will be then used for later decoding steps. Lastly, we explore a hybrid version of MAGNeT, in which we fuse between autoregressive and non-autoregressive models to generate the first few seconds in an autoregressive manner while the rest of the sequence is being decoded in parallel. We demonstrate the efficiency of MAGNeT for the task of text-to-music and text-to-audio generation and conduct an extensive empirical evaluation, considering both objective metrics and human studies. The proposed approach is comparable to the evaluated baselines, while being significantly faster (x7 faster than the autoregressive baseline). Through ablation studies and analysis, we shed light on the importance of each of the components comprising MAGNeT, together with pointing to the trade-offs between autoregressive and non-autoregressive modeling, considering latency, throughput, and generation quality. Samples are available on our demo page https://pages.cs.huji.ac.il/adiyoss-lab/MAGNeT.

  • 9 authors
·
Jan 9, 2024 14

UniAudio 2.0: A Unified Audio Language Model with Text-Aligned Factorized Audio Tokenization

We study two foundational problems in audio language models: (1) how to design an audio tokenizer that can serve as an intermediate representation for both understanding and generation; and (2) how to build an audio foundation model that generalizes in few-shot and zero-shot settings, analogous to large language models. To this end, we make the following two contributions. First, we propose ReasoningCodec, a discrete audio codec that factorizes audio into (i) reasoning tokens, which encode text-aligned, high-level analysis and planning representations for audio understanding and hierarchical generation, and (ii) reconstruction tokens, which encode semantic-rich acoustic cues for high-fidelity waveform reconstruction. This design achieves understanding performance comparable to strong continuous representations while improving generation quality and reconstruction fidelity over prior discrete tokenizers. Second, we introduce a unified autoregressive architecture for text and audio, together with multi-stage training and multi-task data construction. Using this framework, we train UniAudio 2.0 on 100B text tokens and 60B audio tokens. Across a wide range of speech, sound, and music tasks, UniAudio 2.0 performs competitively on in-domain evaluations and demonstrates strong few-shot and zero-shot generalization to unseen tasks. Demo, code, and checkpoints will be available at https://dongchaoyang.top/UniAudio2Demo/{https://dongchaoyang.top/UniAudio2Demo/}.

SpecMaskGIT: Masked Generative Modeling of Audio Spectrograms for Efficient Audio Synthesis and Beyond

Recent advances in generative models that iteratively synthesize audio clips sparked great success to text-to-audio synthesis (TTA), but with the cost of slow synthesis speed and heavy computation. Although there have been attempts to accelerate the iterative procedure, high-quality TTA systems remain inefficient due to hundreds of iterations required in the inference phase and large amount of model parameters. To address the challenges, we propose SpecMaskGIT, a light-weighted, efficient yet effective TTA model based on the masked generative modeling of spectrograms. First, SpecMaskGIT synthesizes a realistic 10s audio clip by less than 16 iterations, an order-of-magnitude less than previous iterative TTA methods.As a discrete model, SpecMaskGIT outperforms larger VQ-Diffusion and auto-regressive models in the TTA benchmark, while being real-time with only 4 CPU cores or even 30x faster with a GPU. Next, built upon a latent space of Mel-spectrogram, SpecMaskGIT has a wider range of applications (e.g., the zero-shot bandwidth extension) than similar methods built on the latent wave domain. Moreover, we interpret SpecMaskGIT as a generative extension to previous discriminative audio masked Transformers, and shed light on its audio representation learning potential. We hope our work inspires the exploration of masked audio modeling toward further diverse scenarios.

  • 9 authors
·
Jun 25, 2024

Learning General Audio Representations with Large-Scale Training of Patchout Audio Transformers

The success of supervised deep learning methods is largely due to their ability to learn relevant features from raw data. Deep Neural Networks (DNNs) trained on large-scale datasets are capable of capturing a diverse set of features, and learning a representation that can generalize onto unseen tasks and datasets that are from the same domain. Hence, these models can be used as powerful feature extractors, in combination with shallower models as classifiers, for smaller tasks and datasets where the amount of training data is insufficient for learning an end-to-end model from scratch. During the past years, Convolutional Neural Networks (CNNs) have largely been the method of choice for audio processing. However, recently attention-based transformer models have demonstrated great potential in supervised settings, outperforming CNNs. In this work, we investigate the use of audio transformers trained on large-scale datasets to learn general-purpose representations. We study how the different setups in these audio transformers affect the quality of their embeddings. We experiment with the models' time resolution, extracted embedding level, and receptive fields in order to see how they affect performance on a variety of tasks and datasets, following the HEAR 2021 NeurIPS challenge evaluation setup. Our results show that representations extracted by audio transformers outperform CNN representations. Furthermore, we will show that transformers trained on Audioset can be extremely effective representation extractors for a wide range of downstream tasks.

  • 6 authors
·
Nov 25, 2022

Autoregressive Diffusion Transformer for Text-to-Speech Synthesis

Audio language models have recently emerged as a promising approach for various audio generation tasks, relying on audio tokenizers to encode waveforms into sequences of discrete symbols. Audio tokenization often poses a necessary compromise between code bitrate and reconstruction accuracy. When dealing with low-bitrate audio codes, language models are constrained to process only a subset of the information embedded in the audio, which in turn restricts their generative capabilities. To circumvent these issues, we propose encoding audio as vector sequences in continuous space mathbb R^d and autoregressively generating these sequences using a decoder-only diffusion transformer (ARDiT). Our findings indicate that ARDiT excels in zero-shot text-to-speech and exhibits performance that compares to or even surpasses that of state-of-the-art models. High-bitrate continuous speech representation enables almost flawless reconstruction, allowing our model to achieve nearly perfect speech editing. Our experiments reveal that employing Integral Kullback-Leibler (IKL) divergence for distillation at each autoregressive step significantly boosts the perceived quality of the samples. Simultaneously, it condenses the iterative sampling process of the diffusion model into a single step. Furthermore, ARDiT can be trained to predict several continuous vectors in one step, significantly reducing latency during sampling. Impressively, one of our models can generate 170 ms of 24 kHz speech per evaluation step with minimal degradation in performance. Audio samples are available at http://ardit-tts.github.io/ .

  • 5 authors
·
Jun 8, 2024

A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks

Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data. Unlike conventional neural networks or updated versions of Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM), transformer models excel in handling long dependencies between input sequence elements and enable parallel processing. As a result, transformer-based models have attracted substantial interest among researchers in the field of artificial intelligence. This can be attributed to their immense potential and remarkable achievements, not only in Natural Language Processing (NLP) tasks but also in a wide range of domains, including computer vision, audio and speech processing, healthcare, and the Internet of Things (IoT). Although several survey papers have been published highlighting the transformer's contributions in specific fields, architectural differences, or performance evaluations, there is still a significant absence of a comprehensive survey paper encompassing its major applications across various domains. Therefore, we undertook the task of filling this gap by conducting an extensive survey of proposed transformer models from 2017 to 2022. Our survey encompasses the identification of the top five application domains for transformer-based models, namely: NLP, Computer Vision, Multi-Modality, Audio and Speech Processing, and Signal Processing. We analyze the impact of highly influential transformer-based models in these domains and subsequently classify them based on their respective tasks using a proposed taxonomy. Our aim is to shed light on the existing potential and future possibilities of transformers for enthusiastic researchers, thus contributing to the broader understanding of this groundbreaking technology.

  • 7 authors
·
Jun 11, 2023

Attention is All You Need? Good Embeddings with Statistics are enough:Large Scale Audio Understanding without Transformers/ Convolutions/ BERTs/ Mixers/ Attention/ RNNs or ....

This paper presents a way of doing large scale audio understanding without traditional state of the art neural architectures. Ever since the introduction of deep learning for understanding audio signals in the past decade, convolutional architectures have been able to achieve state of the art results surpassing traditional hand-crafted features. In the recent past, there has been a similar shift away from traditional convolutional and recurrent neural networks towards purely end-to-end Transformer architectures. We, in this work, explore an approach, based on Bag-of-Words model. Our approach does not have any convolutions, recurrence, attention, transformers or other approaches such as BERT. We utilize micro and macro level clustered vanilla embeddings, and use a MLP head for classification. We only use feed-forward encoder-decoder models to get the bottlenecks of spectral envelops, spectral patches and slices as well as multi-resolution spectra. A classification head (a feed-forward layer), similar to the approach in SimCLR is trained on a learned representation. Using simple codes learned on latent representations, we show how we surpass traditional convolutional neural network architectures, and come strikingly close to outperforming powerful Transformer architectures. This work hopefully would pave way for exciting advancements in the field of representation learning without massive, end-to-end neural architectures.

  • 1 authors
·
Oct 7, 2021

Discrete Audio Tokens: More Than a Survey!

Discrete audio tokens are compact representations that aim to preserve perceptual quality, phonetic content, and speaker characteristics while enabling efficient storage and inference, as well as competitive performance across diverse downstream tasks.They provide a practical alternative to continuous features, enabling the integration of speech and audio into modern large language models (LLMs). As interest in token-based audio processing grows, various tokenization methods have emerged, and several surveys have reviewed the latest progress in the field. However, existing studies often focus on specific domains or tasks and lack a unified comparison across various benchmarks. This paper presents a systematic review and benchmark of discrete audio tokenizers, covering three domains: speech, music, and general audio. We propose a taxonomy of tokenization approaches based on encoder-decoder, quantization techniques, training paradigm, streamability, and application domains. We evaluate tokenizers on multiple benchmarks for reconstruction, downstream performance, and acoustic language modeling, and analyze trade-offs through controlled ablation studies. Our findings highlight key limitations, practical considerations, and open challenges, providing insight and guidance for future research in this rapidly evolving area. For more information, including our main results and tokenizer database, please refer to our website: https://poonehmousavi.github.io/dates-website/.

  • 21 authors
·
Jun 11, 2025 2

AudioGen: Textually Guided Audio Generation

We tackle the problem of generating audio samples conditioned on descriptive text captions. In this work, we propose AaudioGen, an auto-regressive generative model that generates audio samples conditioned on text inputs. AudioGen operates on a learnt discrete audio representation. The task of text-to-audio generation poses multiple challenges. Due to the way audio travels through a medium, differentiating ``objects'' can be a difficult task (e.g., separating multiple people simultaneously speaking). This is further complicated by real-world recording conditions (e.g., background noise, reverberation, etc.). Scarce text annotations impose another constraint, limiting the ability to scale models. Finally, modeling high-fidelity audio requires encoding audio at high sampling rate, leading to extremely long sequences. To alleviate the aforementioned challenges we propose an augmentation technique that mixes different audio samples, driving the model to internally learn to separate multiple sources. We curated 10 datasets containing different types of audio and text annotations to handle the scarcity of text-audio data points. For faster inference, we explore the use of multi-stream modeling, allowing the use of shorter sequences while maintaining a similar bitrate and perceptual quality. We apply classifier-free guidance to improve adherence to text. Comparing to the evaluated baselines, AudioGen outperforms over both objective and subjective metrics. Finally, we explore the ability of the proposed method to generate audio continuation conditionally and unconditionally. Samples: https://felixkreuk.github.io/audiogen

  • 9 authors
·
Sep 30, 2022

MiniMax-Speech: Intrinsic Zero-Shot Text-to-Speech with a Learnable Speaker Encoder

We introduce MiniMax-Speech, an autoregressive Transformer-based Text-to-Speech (TTS) model that generates high-quality speech. A key innovation is our learnable speaker encoder, which extracts timbre features from a reference audio without requiring its transcription. This enables MiniMax-Speech to produce highly expressive speech with timbre consistent with the reference in a zero-shot manner, while also supporting one-shot voice cloning with exceptionally high similarity to the reference voice. In addition, the overall quality of the synthesized audio is enhanced through the proposed Flow-VAE. Our model supports 32 languages and demonstrates excellent performance across multiple objective and subjective evaluations metrics. Notably, it achieves state-of-the-art (SOTA) results on objective voice cloning metrics (Word Error Rate and Speaker Similarity) and has secured the top position on the public TTS Arena leaderboard. Another key strength of MiniMax-Speech, granted by the robust and disentangled representations from the speaker encoder, is its extensibility without modifying the base model, enabling various applications such as: arbitrary voice emotion control via LoRA; text to voice (T2V) by synthesizing timbre features directly from text description; and professional voice cloning (PVC) by fine-tuning timbre features with additional data. We encourage readers to visit https://minimax-ai.github.io/tts_tech_report for more examples.

  • 20 authors
·
May 12, 2025 5

UniTok-Audio: A Unified Audio Generation Framework via Generative Modeling on Discrete Codec Tokens

Generative modeling has recently achieved remarkable success across text, image, and audio domains, demonstrating powerful capabilities for unified representation learning. However, audio generation models still face challenges in terms of audio quality and generalization ability across tasks. This fragmentation results in redundant development efforts, inconsistent performance, and limited extensibility. To address these issues, we propose UniTok-Audio, a scalable and extensible framework for unified audio generation tasks. Specifically, 1) UniTok-Audio extracts continuous feature of conditions to generates discrete tokens of target audio in an autoregressive manner; 2) a special task identifier token unifies different learning patterns of multiple tasks in a single framework; 3) a dual-stream audio codec involving acoustic and semantic branch is developed for high-fidelity waveform reconstruction. Experimental results demonstrate that UniTok-Audio achieves competitive performance in comparation with state-of-the-art task-specific or multi-task systems across five time-aligned tasks: speech restoration, target speaker extraction, speech separation, voice conversion, and language-queried audio source separation. To foster future research, we will open-source our codebase. The demo page of our work can be found here: https://alibaba.github.io/unified-audio.

  • 8 authors
·
Oct 30, 2025

MuSE-SVS: Multi-Singer Emotional Singing Voice Synthesizer that Controls Emotional Intensity

We propose a multi-singer emotional singing voice synthesizer, Muse-SVS, that expresses emotion at various intensity levels by controlling subtle changes in pitch, energy, and phoneme duration while accurately following the score. To control multiple style attributes while avoiding loss of fidelity and expressiveness due to interference between attributes, Muse-SVS represents all attributes and their relations together by a joint embedding in a unified embedding space. Muse-SVS can express emotional intensity levels not included in the training data through embedding interpolation and extrapolation. We also propose a statistical pitch predictor to express pitch variance according to emotional intensity, and a context-aware residual duration predictor to prevent the accumulation of variances in phoneme duration, which is crucial for synchronization with instrumental parts. In addition, we propose a novel ASPP-Transformer, which combines atrous spatial pyramid pooling (ASPP) and Transformer, to improve fidelity and expressiveness by referring to broad contexts. In experiments, Muse-SVS exhibited improved fidelity, expressiveness, and synchronization performance compared with baseline models. The visualization results show that Muse-SVS effectively express the variance in pitch, energy, and phoneme duration according to emotional intensity. To the best of our knowledge, Muse-SVS is the first neural SVS capable of controlling emotional intensity.

DreamFoley: Scalable VLMs for High-Fidelity Video-to-Audio Generation

Recent advances in video generation have achieved remarkable improvements in visual content fidelity. However, the absence of synchronized audio severely undermines immersive experience and restricts practical applications of these technologies. To address this challenge, several pioneering works have explored diffusion transformer architectures for generating plausible video-synchronized audio, including Kling-foley, HunyuanVideo-foley and Thinksound. Distinct from existing works, we introduce an autoregressive audio generation architecture (DreamFoley) that harnesses the capabilities of large vision-language models (VLMs) to jointly model sequential interactions among video, audio, and text modalities. Our approach features a dual-visual encoder module that effectively captures both audio-aligned and text-aligned visual features. Additionally, we employ a Residual Vector Quantization audio tokenizer with a delay-pattern generation scheme to balance the trade-off between training efficiency and audio quality. Moreover, we introduce the classifier-free guidance strategy into VLMs to bootstrap generated audio quality. Furthermore, we establish an efficient data production pipeline to scale audio-video-text triple collection. Finally, extensive experiments are conducted to validate the effectiveness of our model, achieving promising performance across popular benchmarks. We hope that the findings in this study provide a strong foundation for future video-to-audio generation research. We also release the previously missing audio-visual textual descriptions from the public benchmark, aiming to facilitate subsequent researchers in conducting more convenient and effective evaluations and comparisons.

  • 5 authors
·
Dec 4, 2025

Enhance Generation Quality of Flow Matching V2A Model via Multi-Step CoT-Like Guidance and Combined Preference Optimization

Creating high-quality sound effects from videos and text prompts requires precise alignment between visual and audio domains, both semantically and temporally, along with step-by-step guidance for professional audio generation. However, current state-of-the-art video-guided audio generation models often fall short of producing high-quality audio for both general and specialized use cases. To address this challenge, we introduce a multi-stage, multi-modal, end-to-end generative framework with Chain-of-Thought-like (CoT-like) guidance learning, termed Chain-of-Perform (CoP). First, we employ a transformer-based network architecture designed to achieve CoP guidance, enabling the generation of both general and professional audio. Second, we implement a multi-stage training framework that follows step-by-step guidance to ensure the generation of high-quality sound effects. Third, we develop a CoP multi-modal dataset, guided by video, to support step-by-step sound effects generation. Evaluation results highlight the advantages of the proposed multi-stage CoP generative framework compared to the state-of-the-art models on a variety of datasets, with FAD 0.79 to 0.74 (+6.33%), CLIP 16.12 to 17.70 (+9.80%) on VGGSound, SI-SDR 1.98dB to 3.35dB (+69.19%), MOS 2.94 to 3.49(+18.71%) on PianoYT-2h, and SI-SDR 2.22dB to 3.21dB (+44.59%), MOS 3.07 to 3.42 (+11.40%) on Piano-10h.

  • 7 authors
·
Mar 28, 2025

EmoDubber: Towards High Quality and Emotion Controllable Movie Dubbing

Given a piece of text, a video clip, and a reference audio, the movie dubbing task aims to generate speech that aligns with the video while cloning the desired voice. The existing methods have two primary deficiencies: (1) They struggle to simultaneously hold audio-visual sync and achieve clear pronunciation; (2) They lack the capacity to express user-defined emotions. To address these problems, we propose EmoDubber, an emotion-controllable dubbing architecture that allows users to specify emotion type and emotional intensity while satisfying high-quality lip sync and pronunciation. Specifically, we first design Lip-related Prosody Aligning (LPA), which focuses on learning the inherent consistency between lip motion and prosody variation by duration level contrastive learning to incorporate reasonable alignment. Then, we design Pronunciation Enhancing (PE) strategy to fuse the video-level phoneme sequences by efficient conformer to improve speech intelligibility. Next, the speaker identity adapting module aims to decode acoustics prior and inject the speaker style embedding. After that, the proposed Flow-based User Emotion Controlling (FUEC) is used to synthesize waveform by flow matching prediction network conditioned on acoustics prior. In this process, the FUEC determines the gradient direction and guidance scale based on the user's emotion instructions by the positive and negative guidance mechanism, which focuses on amplifying the desired emotion while suppressing others. Extensive experimental results on three benchmark datasets demonstrate favorable performance compared to several state-of-the-art methods.

  • 8 authors
·
Dec 12, 2024

CarelessWhisper: Turning Whisper into a Causal Streaming Model

Automatic Speech Recognition (ASR) has seen remarkable progress, with models like OpenAI Whisper and NVIDIA Canary achieving state-of-the-art (SOTA) performance in offline transcription. However, these models are not designed for streaming (online or real-time) transcription, due to limitations in their architecture and training methodology. We propose a method to turn the transformer encoder-decoder model into a low-latency streaming model that is careless about future context. We present an analysis explaining why it is not straightforward to convert an encoder-decoder transformer to a low-latency streaming model. Our proposed method modifies the existing (non-causal) encoder to a causal encoder by fine-tuning both the encoder and decoder using Low-Rank Adaptation (LoRA) and a weakly aligned dataset. We then propose an updated inference mechanism that utilizes the fine-tune causal encoder and decoder to yield greedy and beam-search decoding, and is shown to be locally optimal. Experiments on low-latency chunk sizes (less than 300 msec) show that our fine-tuned model outperforms existing non-fine-tuned streaming approaches in most cases, while using a lower complexity. Additionally, we observe that our training process yields better alignment, enabling a simple method for extracting word-level timestamps. We release our training and inference code, along with the fine-tuned models, to support further research and development in streaming ASR.

  • 3 authors
·
Aug 17, 2025

AudioGen-Omni: A Unified Multimodal Diffusion Transformer for Video-Synchronized Audio, Speech, and Song Generation

We present AudioGen-Omni - a unified approach based on multimodal diffusion transformers (MMDit), capable of generating high-fidelity audio, speech, and song coherently synchronized with the input video. AudioGen-Omni introduces a novel joint training paradigm that seamlessly integrates large-scale video-text-audio corpora, enabling a model capable of generating semantically rich, acoustically diverse audio conditioned on multimodal inputs and adaptable to a wide range of audio generation tasks. AudioGen-Omni employs a unified lyrics-transcription encoder that encodes graphemes and phonemes from both song and spoken inputs into dense frame-level representations. Dense frame-level representations are fused using an AdaLN-based joint attention mechanism enhanced with phase-aligned anisotropic positional infusion (PAAPI), wherein RoPE is selectively applied to temporally structured modalities to ensure precise and robust cross-modal alignment. By unfreezing all modalities and masking missing inputs, AudioGen-Omni mitigates the semantic constraints of text-frozen paradigms, enabling effective cross-modal conditioning. This joint training approach enhances audio quality, semantic alignment, and lip-sync accuracy, while also achieving state-of-the-art results on Text-to-Audio/Speech/Song tasks. With an inference time of 1.91 seconds for 8 seconds of audio, it offers substantial improvements in both efficiency and generality.

  • 7 authors
·
Aug 1, 2025

Taming Data and Transformers for Audio Generation

Generating ambient sounds and effects is a challenging problem due to data scarcity and often insufficient caption quality, making it difficult to employ large-scale generative models for the task. In this work, we tackle the problem by introducing two new models. First, we propose AutoCap, a high-quality and efficient automatic audio captioning model. We show that by leveraging metadata available with the audio modality, we can substantially improve the quality of captions. AutoCap reaches CIDEr score of 83.2, marking a 3.2% improvement from the best available captioning model at four times faster inference speed. We then use AutoCap to caption clips from existing datasets, obtaining 761,000 audio clips with high-quality captions, forming the largest available audio-text dataset. Second, we propose GenAu, a scalable transformer-based audio generation architecture that we scale up to 1.25B parameters and train with our new dataset. When compared to state-of-the-art audio generators, GenAu obtains significant improvements of 15.7% in FAD score, 22.7% in IS, and 13.5% in CLAP score, indicating significantly improved quality of generated audio compared to previous works. This shows that the quality of data is often as important as its quantity. Besides, since AutoCap is fully automatic, new audio samples can be added to the training dataset, unlocking the training of even larger generative models for audio synthesis.

  • 6 authors
·
Jun 27, 2024

Quantize More, Lose Less: Autoregressive Generation from Residually Quantized Speech Representations

Text-to-speech (TTS) synthesis has seen renewed progress under the discrete modeling paradigm. Existing autoregressive approaches often rely on single-codebook representations, which suffer from significant information loss. Even with post-hoc refinement techniques such as flow matching, these methods fail to recover fine-grained details (e.g., prosodic nuances, speaker-specific timbres), especially in challenging scenarios like singing voice or music synthesis. We propose QTTS, a novel TTS framework built upon our new audio codec, QDAC. The core innovation of QDAC lies in its end-to-end training of an ASR-based auto-regressive network with a GAN, which achieves superior semantic feature disentanglement for scalable, near-lossless compression. QTTS models these discrete codes using two innovative strategies: the Hierarchical Parallel architecture, which uses a dual-AR structure to model inter-codebook dependencies for higher-quality synthesis, and the Delay Multihead approach, which employs parallelized prediction with a fixed delay to accelerate inference speed. Our experiments demonstrate that the proposed framework achieves higher synthesis quality and better preserves expressive content compared to baseline. This suggests that scaling up compression via multi-codebook modeling is a promising direction for high-fidelity, general-purpose speech and audio generation.

  • 28 authors
·
Jul 16, 2025

Affective social anthropomorphic intelligent system

Human conversational styles are measured by the sense of humor, personality, and tone of voice. These characteristics have become essential for conversational intelligent virtual assistants. However, most of the state-of-the-art intelligent virtual assistants (IVAs) are failed to interpret the affective semantics of human voices. This research proposes an anthropomorphic intelligent system that can hold a proper human-like conversation with emotion and personality. A voice style transfer method is also proposed to map the attributes of a specific emotion. Initially, the frequency domain data (Mel-Spectrogram) is created by converting the temporal audio wave data, which comprises discrete patterns for audio features such as notes, pitch, rhythm, and melody. A collateral CNN-Transformer-Encoder is used to predict seven different affective states from voice. The voice is also fed parallelly to the deep-speech, an RNN model that generates the text transcription from the spectrogram. Then the transcripted text is transferred to the multi-domain conversation agent using blended skill talk, transformer-based retrieve-and-generate generation strategy, and beam-search decoding, and an appropriate textual response is generated. The system learns an invertible mapping of data to a latent space that can be manipulated and generates a Mel-spectrogram frame based on previous Mel-spectrogram frames to voice synthesize and style transfer. Finally, the waveform is generated using WaveGlow from the spectrogram. The outcomes of the studies we conducted on individual models were auspicious. Furthermore, users who interacted with the system provided positive feedback, demonstrating the system's effectiveness.

  • 5 authors
·
Apr 19, 2023

FunCineForge: A Unified Dataset Toolkit and Model for Zero-Shot Movie Dubbing in Diverse Cinematic Scenes

Movie dubbing is the task of synthesizing speech from scripts conditioned on video scenes, requiring accurate lip sync, faithful timbre transfer, and proper modeling of character identity and emotion. However, existing methods face two major limitations: (1) high-quality multimodal dubbing datasets are limited in scale, suffer from high word error rates, contain sparse annotations, rely on costly manual labeling, and are restricted to monologue scenes, all of which hinder effective model training; (2) existing dubbing models rely solely on the lip region to learn audio-visual alignment, which limits their applicability to complex live-action cinematic scenes, and exhibit suboptimal performance in lip sync, speech quality, and emotional expressiveness. To address these issues, we propose FunCineForge, which comprises an end-to-end production pipeline for large-scale dubbing datasets and an MLLM-based dubbing model designed for diverse cinematic scenes. Using the pipeline, we construct the first Chinese television dubbing dataset with rich annotations, and demonstrate the high quality of these data. Experiments across monologue, narration, dialogue, and multi-speaker scenes show that our dubbing model consistently outperforms SOTA methods in audio quality, lip sync, timbre transfer, and instruction following. Code and demos are available at https://anonymous.4open.science/w/FunCineForge.

  • 5 authors
·
Jan 21

Parameter-Efficient Transfer Learning of Audio Spectrogram Transformers

The common modus operandi of fine-tuning large pre-trained Transformer models entails the adaptation of all their parameters (i.e., full fine-tuning). While achieving striking results on multiple tasks, this approach becomes unfeasible as the model size and the number of downstream tasks increase. In natural language processing and computer vision, parameter-efficient approaches like prompt-tuning and adapters have emerged as solid alternatives by fine-tuning only a small number of extra parameters, without sacrificing performance accuracy. Specifically, adapters, due to their flexibility, have recently garnered significant attention, leading to several variants. For audio classification tasks, the Audio Spectrogram Transformer model shows impressive results. However, surprisingly, how to efficiently adapt it to several downstream tasks has not been tackled before. In this paper, we bridge this gap and present a detailed investigation of common parameter-efficient methods, revealing that adapters consistently outperform the other methods across four benchmarks. This trend is also confirmed in few-shot learning settings and when the total number of trainable parameters increases, demonstrating adapters superior scalability. We finally study the best adapter configuration, as well as the role of residual connections in the learning process. Our code is available at: https://github.com/umbertocappellazzo/PETL AST.

  • 4 authors
·
Dec 6, 2023

Density Adaptive Attention-based Speech Network: Enhancing Feature Understanding for Mental Health Disorders

Speech-based depression detection poses significant challenges for automated detection due to its unique manifestation across individuals and data scarcity. Addressing these challenges, we introduce DAAMAudioCNNLSTM and DAAMAudioTransformer, two parameter efficient and explainable models for audio feature extraction and depression detection. DAAMAudioCNNLSTM features a novel CNN-LSTM framework with multi-head Density Adaptive Attention Mechanism (DAAM), focusing dynamically on informative speech segments. DAAMAudioTransformer, leveraging a transformer encoder in place of the CNN-LSTM architecture, incorporates the same DAAM module for enhanced attention and interpretability. These approaches not only enhance detection robustness and interpretability but also achieve state-of-the-art performance: DAAMAudioCNNLSTM with an F1 macro score of 0.702 and DAAMAudioTransformer with an F1 macro score of 0.72 on the DAIC-WOZ dataset, without reliance on supplementary information such as vowel positions and speaker information during training/validation as in previous approaches. Both models' significant explainability and efficiency in leveraging speech signals for depression detection represent a leap towards more reliable, clinically useful diagnostic tools, promising advancements in speech and mental health care. To foster further research in this domain, we make our code publicly available.

  • 4 authors
·
Aug 31, 2024 3

Llasa: Scaling Train-Time and Inference-Time Compute for Llama-based Speech Synthesis

Recent advances in text-based large language models (LLMs), particularly in the GPT series and the o1 model, have demonstrated the effectiveness of scaling both training-time and inference-time compute. However, current state-of-the-art TTS systems leveraging LLMs are often multi-stage, requiring separate models (e.g., diffusion models after LLM), complicating the decision of whether to scale a particular model during training or testing. This work makes the following contributions: First, we explore the scaling of train-time and inference-time compute for speech synthesis. Second, we propose a simple framework Llasa for speech synthesis that employs a single-layer vector quantizer (VQ) codec and a single Transformer architecture to fully align with standard LLMs such as Llama. Our experiments reveal that scaling train-time compute for Llasa consistently improves the naturalness of synthesized speech and enables the generation of more complex and accurate prosody patterns. Furthermore, from the perspective of scaling inference-time compute, we employ speech understanding models as verifiers during the search, finding that scaling inference-time compute shifts the sampling modes toward the preferences of specific verifiers, thereby improving emotional expressiveness, timbre consistency, and content accuracy. In addition, we released the checkpoint and training code for our TTS model (1B, 3B, 8B) and codec model publicly available.

  • 20 authors
·
Feb 6, 2025 4

SongGen: A Single Stage Auto-regressive Transformer for Text-to-Song Generation

Text-to-song generation, the task of creating vocals and accompaniment from textual inputs, poses significant challenges due to domain complexity and data scarcity. Existing approaches often employ multi-stage generation procedures, resulting in cumbersome training and inference pipelines. In this paper, we propose SongGen, a fully open-source, single-stage auto-regressive transformer designed for controllable song generation. The proposed model facilitates fine-grained control over diverse musical attributes, including lyrics and textual descriptions of instrumentation, genre, mood, and timbre, while also offering an optional three-second reference clip for voice cloning. Within a unified auto-regressive framework, SongGen supports two output modes: mixed mode, which generates a mixture of vocals and accompaniment directly, and dual-track mode, which synthesizes them separately for greater flexibility in downstream applications. We explore diverse token pattern strategies for each mode, leading to notable improvements and valuable insights. Furthermore, we design an automated data preprocessing pipeline with effective quality control. To foster community engagement and future research, we will release our model weights, training code, annotated data, and preprocessing pipeline. The generated samples are showcased on our project page at https://liuzh-19.github.io/SongGen/ , and the code will be available at https://github.com/LiuZH-19/SongGen .

  • 9 authors
·
Feb 18, 2025 2

Combo: Co-speech holistic 3D human motion generation and efficient customizable adaptation in harmony

In this paper, we propose a novel framework, Combo, for harmonious co-speech holistic 3D human motion generation and efficient customizable adaption. In particular, we identify that one fundamental challenge as the multiple-input-multiple-output (MIMO) nature of the generative model of interest. More concretely, on the input end, the model typically consumes both speech signals and character guidance (e.g., identity and emotion), which not only poses challenge on learning capacity but also hinders further adaptation to varying guidance; on the output end, holistic human motions mainly consist of facial expressions and body movements, which are inherently correlated but non-trivial to coordinate in current data-driven generation process. In response to the above challenge, we propose tailored designs to both ends. For the former, we propose to pre-train on data regarding a fixed identity with neutral emotion, and defer the incorporation of customizable conditions (identity and emotion) to fine-tuning stage, which is boosted by our novel X-Adapter for parameter-efficient fine-tuning. For the latter, we propose a simple yet effective transformer design, DU-Trans, which first divides into two branches to learn individual features of face expression and body movements, and then unites those to learn a joint bi-directional distribution and directly predicts combined coefficients. Evaluated on BEAT2 and SHOW datasets, Combo is highly effective in generating high-quality motions but also efficient in transferring identity and emotion. Project website: https://xc-csc101.github.io/combo/{Combo}.

  • 8 authors
·
Aug 18, 2024

Diverse and Aligned Audio-to-Video Generation via Text-to-Video Model Adaptation

We consider the task of generating diverse and realistic videos guided by natural audio samples from a wide variety of semantic classes. For this task, the videos are required to be aligned both globally and temporally with the input audio: globally, the input audio is semantically associated with the entire output video, and temporally, each segment of the input audio is associated with a corresponding segment of that video. We utilize an existing text-conditioned video generation model and a pre-trained audio encoder model. The proposed method is based on a lightweight adaptor network, which learns to map the audio-based representation to the input representation expected by the text-to-video generation model. As such, it also enables video generation conditioned on text, audio, and, for the first time as far as we can ascertain, on both text and audio. We validate our method extensively on three datasets demonstrating significant semantic diversity of audio-video samples and further propose a novel evaluation metric (AV-Align) to assess the alignment of generated videos with input audio samples. AV-Align is based on the detection and comparison of energy peaks in both modalities. In comparison to recent state-of-the-art approaches, our method generates videos that are better aligned with the input sound, both with respect to content and temporal axis. We also show that videos produced by our method present higher visual quality and are more diverse.

  • 6 authors
·
Sep 28, 2023 2

Killing two birds with one stone: Can an audio captioning system also be used for audio-text retrieval?

Automated Audio Captioning (AAC) aims to develop systems capable of describing an audio recording using a textual sentence. In contrast, Audio-Text Retrieval (ATR) systems seek to find the best matching audio recording(s) for a given textual query (Text-to-Audio) or vice versa (Audio-to-Text). These tasks require different types of systems: AAC employs a sequence-to-sequence model, while ATR utilizes a ranking model that compares audio and text representations within a shared projection subspace. However, this work investigates the relationship between AAC and ATR by exploring the ATR capabilities of an unmodified AAC system, without fine-tuning for the new task. Our AAC system consists of an audio encoder (ConvNeXt-Tiny) trained on AudioSet for audio tagging, and a transformer decoder responsible for generating sentences. For AAC, it achieves a high SPIDEr-FL score of 0.298 on Clotho and 0.472 on AudioCaps on average. For ATR, we propose using the standard Cross-Entropy loss values obtained for any audio/caption pair. Experimental results on the Clotho and AudioCaps datasets demonstrate decent recall values using this simple approach. For instance, we obtained a Text-to-Audio R@1 value of 0.382 for Au-dioCaps, which is above the current state-of-the-art method without external data. Interestingly, we observe that normalizing the loss values was necessary for Audio-to-Text retrieval.

  • 3 authors
·
Aug 29, 2023

Audiobox TTA-RAG: Improving Zero-Shot and Few-Shot Text-To-Audio with Retrieval-Augmented Generation

Current leading Text-To-Audio (TTA) generation models suffer from degraded performance on zero-shot and few-shot settings. It is often challenging to generate high-quality audio for audio events that are unseen or uncommon in the training set. Inspired by the success of Retrieval-Augmented Generation (RAG) in Large Language Model (LLM)-based knowledge-intensive tasks, we extend the TTA process with additional conditioning contexts. We propose Audiobox TTA-RAG, a novel retrieval-augmented TTA approach based on Audiobox, a conditional flow-matching audio generation model. Unlike the vanilla Audiobox TTA solution which generates audio conditioned on text, we augmented the conditioning input with retrieved audio samples that provide additional acoustic information to generate the target audio. Our retrieval method does not require the external database to have labeled audio, offering more practical use cases. To evaluate our proposed method, we curated test sets in zero-shot and few-shot settings. Our empirical results show that the proposed model can effectively leverage the retrieved audio samples and significantly improve zero-shot and few-shot TTA performance, with large margins on multiple evaluation metrics, while maintaining the ability to generate semantically aligned audio for the in-domain setting. In addition, we investigate the effect of different retrieval methods and data sources.

  • 5 authors
·
Nov 7, 2024

WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling

Language models have been effectively applied to modeling natural signals, such as images, video, speech, and audio. A crucial component of these models is the codec tokenizer, which compresses high-dimensional natural signals into lower-dimensional discrete tokens. In this paper, we introduce WavTokenizer, which offers several advantages over previous SOTA acoustic codec models in the audio domain: 1)extreme compression. By compressing the layers of quantizers and the temporal dimension of the discrete codec, one-second audio of 24kHz sampling rate requires only a single quantizer with 40 or 75 tokens. 2)improved subjective quality. Despite the reduced number of tokens, WavTokenizer achieves state-of-the-art reconstruction quality with outstanding UTMOS scores and inherently contains richer semantic information. Specifically, we achieve these results by designing a broader VQ space, extended contextual windows, and improved attention networks, as well as introducing a powerful multi-scale discriminator and an inverse Fourier transform structure. We conducted extensive reconstruction experiments in the domains of speech, audio, and music. WavTokenizer exhibited strong performance across various objective and subjective metrics compared to state-of-the-art models. We also tested semantic information, VQ utilization, and adaptability to generative models. Comprehensive ablation studies confirm the necessity of each module in WavTokenizer. The related code, demos, and pre-trained models are available at https://github.com/jishengpeng/WavTokenizer.

  • 16 authors
·
Aug 29, 2024 4

LTX-2: Efficient Joint Audio-Visual Foundation Model

Recent text-to-video diffusion models can generate compelling video sequences, yet they remain silent -- missing the semantic, emotional, and atmospheric cues that audio provides. We introduce LTX-2, an open-source foundational model capable of generating high-quality, temporally synchronized audiovisual content in a unified manner. LTX-2 consists of an asymmetric dual-stream transformer with a 14B-parameter video stream and a 5B-parameter audio stream, coupled through bidirectional audio-video cross-attention layers with temporal positional embeddings and cross-modality AdaLN for shared timestep conditioning. This architecture enables efficient training and inference of a unified audiovisual model while allocating more capacity for video generation than audio generation. We employ a multilingual text encoder for broader prompt understanding and introduce a modality-aware classifier-free guidance (modality-CFG) mechanism for improved audiovisual alignment and controllability. Beyond generating speech, LTX-2 produces rich, coherent audio tracks that follow the characters, environment, style, and emotion of each scene -- complete with natural background and foley elements. In our evaluations, the model achieves state-of-the-art audiovisual quality and prompt adherence among open-source systems, while delivering results comparable to proprietary models at a fraction of their computational cost and inference time. All model weights and code are publicly released.

NaturalVoices: A Large-Scale, Spontaneous and Emotional Podcast Dataset for Voice Conversion

Everyday speech conveys far more than words, it reflects who we are, how we feel, and the circumstances surrounding our interactions. Yet, most existing speech datasets are acted, limited in scale, and fail to capture the expressive richness of real-life communication. With the rise of large neural networks, several large-scale speech corpora have emerged and been widely adopted across various speech processing tasks. However, the field of voice conversion (VC) still lacks large-scale, expressive, and real-life speech resources suitable for modeling natural prosody and emotion. To fill this gap, we release NaturalVoices (NV), the first large-scale spontaneous podcast dataset specifically designed for emotion-aware voice conversion. It comprises 5,049 hours of spontaneous podcast recordings with automatic annotations for emotion (categorical and attribute-based), speech quality, transcripts, speaker identity, and sound events. The dataset captures expressive emotional variation across thousands of speakers, diverse topics, and natural speaking styles. We also provide an open-source pipeline with modular annotation tools and flexible filtering, enabling researchers to construct customized subsets for a wide range of VC tasks. Experiments demonstrate that NaturalVoices supports the development of robust and generalizable VC models capable of producing natural, expressive speech, while revealing limitations of current architectures when applied to large-scale spontaneous data. These results suggest that NaturalVoices is both a valuable resource and a challenging benchmark for advancing the field of voice conversion. Dataset is available at: https://huggingface.co/JHU-SmileLab

  • 7 authors
·
Oct 31, 2025

FusionAudio-1.2M: Towards Fine-grained Audio Captioning with Multimodal Contextual Fusion

High-quality, large-scale audio captioning is crucial for advancing audio understanding, yet current automated methods often generate captions that lack fine-grained detail and contextual accuracy, primarily due to their reliance on limited unimodal or superficial multimodal information. Drawing inspiration from human auditory perception, which adeptly integrates cross-modal cues and performs sophisticated auditory scene analysis, we introduce a novel two-stage automated pipeline. This pipeline first employs specialized pretrained models to extract diverse contextual cues (e.g., speech, music, general sounds, and visual information from associated video). A large language model (LLM) then synthesizes these rich, multimodal inputs to generate detailed and context-aware audio captions. Key contributions of this work include: (1) the proposed scalable method for fine-grained audio caption generation; (2) FusionAudio, a new large-scale dataset comprising 1.2 million such detailed captions, combined with 6 million QA pairs; and (3) enhanced audio models developed using FusionAudio, specifically a CLAP-based audio encoder with superior audio-text alignment and instruction following. This paper paves the way for more nuanced and accurate automated understanding of complex audio environments. Code and data can be found in https://github.com/satsuki2486441738/FusionAudio.

  • 8 authors
·
Jun 1, 2025 2

Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement

The imitation of voice, targeted on specific speech attributes such as timbre and speaking style, is crucial in speech generation. However, existing methods rely heavily on annotated data, and struggle with effectively disentangling timbre and style, leading to challenges in achieving controllable generation, especially in zero-shot scenarios. To address these issues, we propose Vevo, a versatile zero-shot voice imitation framework with controllable timbre and style. Vevo operates in two core stages: (1) Content-Style Modeling: Given either text or speech's content tokens as input, we utilize an autoregressive transformer to generate the content-style tokens, which is prompted by a style reference; (2) Acoustic Modeling: Given the content-style tokens as input, we employ a flow-matching transformer to produce acoustic representations, which is prompted by a timbre reference. To obtain the content and content-style tokens of speech, we design a fully self-supervised approach that progressively decouples the timbre, style, and linguistic content of speech. Specifically, we adopt VQ-VAE as the tokenizer for the continuous hidden features of HuBERT. We treat the vocabulary size of the VQ-VAE codebook as the information bottleneck, and adjust it carefully to obtain the disentangled speech representations. Solely self-supervised trained on 60K hours of audiobook speech data, without any fine-tuning on style-specific corpora, Vevo matches or surpasses existing methods in accent and emotion conversion tasks. Additionally, Vevo's effectiveness in zero-shot voice conversion and text-to-speech tasks further demonstrates its strong generalization and versatility. Audio samples are available at https://versavoice.github.io.

  • 13 authors
·
Feb 10, 2025

EzAudio: Enhancing Text-to-Audio Generation with Efficient Diffusion Transformer

Latent diffusion models have shown promising results in text-to-audio (T2A) generation tasks, yet previous models have encountered difficulties in generation quality, computational cost, diffusion sampling, and data preparation. In this paper, we introduce EzAudio, a transformer-based T2A diffusion model, to handle these challenges. Our approach includes several key innovations: (1) We build the T2A model on the latent space of a 1D waveform Variational Autoencoder (VAE), avoiding the complexities of handling 2D spectrogram representations and using an additional neural vocoder. (2) We design an optimized diffusion transformer architecture specifically tailored for audio latent representations and diffusion modeling, which enhances convergence speed, training stability, and memory usage, making the training process easier and more efficient. (3) To tackle data scarcity, we adopt a data-efficient training strategy that leverages unlabeled data for learning acoustic dependencies, audio caption data annotated by audio-language models for text-to-audio alignment learning, and human-labeled data for fine-tuning. (4) We introduce a classifier-free guidance (CFG) rescaling method that simplifies EzAudio by achieving strong prompt alignment while preserving great audio quality when using larger CFG scores, eliminating the need to struggle with finding the optimal CFG score to balance this trade-off. EzAudio surpasses existing open-source models in both objective metrics and subjective evaluations, delivering realistic listening experiences while maintaining a streamlined model structure, low training costs, and an easy-to-follow training pipeline. Code, data, and pre-trained models are released at: https://haidog-yaqub.github.io/EzAudio-Page/.

  • 7 authors
·
Sep 16, 2024 3

VinTAGe: Joint Video and Text Conditioning for Holistic Audio Generation

Recent advances in audio generation have focused on text-to-audio (T2A) and video-to-audio (V2A) tasks. However, T2A or V2A methods cannot generate holistic sounds (onscreen and off-screen). This is because T2A cannot generate sounds aligning with onscreen objects, while V2A cannot generate semantically complete (offscreen sounds missing). In this work, we address the task of holistic audio generation: given a video and a text prompt, we aim to generate both onscreen and offscreen sounds that are temporally synchronized with the video and semantically aligned with text and video. Previous approaches for joint text and video-to-audio generation often suffer from modality bias, favoring one modality over the other. To overcome this limitation, we introduce VinTAGe, a flow-based transformer model that jointly considers text and video to guide audio generation. Our framework comprises two key components: a Visual-Text Encoder and a Joint VT-SiT model. To reduce modality bias and improve generation quality, we employ pretrained uni-modal text-to-audio and video-to-audio generation models for additional guidance. Due to the lack of appropriate benchmarks, we also introduce VinTAGe-Bench, a dataset of 636 video-text-audio pairs containing both onscreen and offscreen sounds. Our comprehensive experiments on VinTAGe-Bench demonstrate that joint text and visual interaction is necessary for holistic audio generation. Furthermore, VinTAGe achieves state-of-the-art results on the VGGSound benchmark. Our source code and pre-trained models will be released. Demo is available at: https://www.youtube.com/watch?v=QmqWhUjPkJI.

  • 2 authors
·
Dec 14, 2024

UniFlow-Audio: Unified Flow Matching for Audio Generation from Omni-Modalities

Audio generation, including speech, music and sound effects, has advanced rapidly in recent years. These tasks can be divided into two categories: time-aligned (TA) tasks, where each input unit corresponds to a specific segment of the output audio (e.g., phonemes aligned with frames in speech synthesis); and non-time-aligned (NTA) tasks, where such alignment is not available. Since modeling paradigms for the two types are typically different, research on different audio generation tasks has traditionally followed separate trajectories. However, audio is not inherently divided into such categories, making a unified model a natural and necessary goal for general audio generation. Previous unified audio generation works have adopted autoregressive architectures, while unified non-autoregressive approaches remain largely unexplored. In this work, we propose UniFlow-Audio, a universal audio generation framework based on flow matching. We propose a dual-fusion mechanism that temporally aligns audio latents with TA features and integrates NTA features via cross-attention in each model block. Task-balanced data sampling is employed to maintain strong performance across both TA and NTA tasks. UniFlow-Audio supports omni-modalities, including text, audio, and video. By leveraging the advantage of multi-task learning and the generative modeling capabilities of flow matching, UniFlow-Audio achieves strong results across 7 tasks using fewer than 8K hours of public training data and under 1B trainable parameters. Even the small variant with only ~200M trainable parameters shows competitive performance, highlighting UniFlow-Audio as a potential non-auto-regressive foundation model for audio generation. Code and models will be available at https://wsntxxn.github.io/uniflow_audio.

  • 12 authors
·
Sep 29, 2025

SSAMBA: Self-Supervised Audio Representation Learning with Mamba State Space Model

Transformers have revolutionized deep learning across various tasks, including audio representation learning, due to their powerful modeling capabilities. However, they often suffer from quadratic complexity in both GPU memory usage and computational inference time, affecting their efficiency. Recently, state space models (SSMs) like Mamba have emerged as a promising alternative, offering a more efficient approach by avoiding these complexities. Given these advantages, we explore the potential of SSM-based models in audio tasks. In this paper, we introduce Self-Supervised Audio Mamba (SSAMBA), the first self-supervised, attention-free, and SSM-based model for audio representation learning. SSAMBA leverages the bidirectional Mamba to capture complex audio patterns effectively. We incorporate a self-supervised pretraining framework that optimizes both discriminative and generative objectives, enabling the model to learn robust audio representations from large-scale, unlabeled datasets. We evaluated SSAMBA on various tasks such as audio classification, keyword spotting, and speaker identification. Our results demonstrate that SSAMBA outperforms the Self-Supervised Audio Spectrogram Transformer (SSAST) in most tasks. Notably, SSAMBA is approximately 92.7% faster in batch inference speed and 95.4% more memory-efficient than SSAST for the tiny model size with an input token size of 22k. These efficiency gains, combined with superior performance, underscore the effectiveness of SSAMBA's architectural innovation, making it a compelling choice for a wide range of audio processing applications.

  • 4 authors
·
May 20, 2024

EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection

The advancement of text-to-speech and audio generation models necessitates robust benchmarks for evaluating the emotional understanding capabilities of AI systems. Current speech emotion recognition (SER) datasets often exhibit limitations in emotional granularity, privacy concerns, or reliance on acted portrayals. This paper introduces EmoNet-Voice, a new resource for speech emotion detection, which includes EmoNet-Voice Big, a large-scale pre-training dataset (featuring over 4,500 hours of speech across 11 voices, 40 emotions, and 4 languages), and EmoNet-Voice Bench, a novel benchmark dataset with human expert annotations. EmoNet-Voice is designed to evaluate SER models on a fine-grained spectrum of 40 emotion categories with different levels of intensities. Leveraging state-of-the-art voice generation, we curated synthetic audio snippets simulating actors portraying scenes designed to evoke specific emotions. Crucially, we conducted rigorous validation by psychology experts who assigned perceived intensity labels. This synthetic, privacy-preserving approach allows for the inclusion of sensitive emotional states often absent in existing datasets. Lastly, we introduce Empathic Insight Voice models that set a new standard in speech emotion recognition with high agreement with human experts. Our evaluations across the current model landscape exhibit valuable findings, such as high-arousal emotions like anger being much easier to detect than low-arousal states like concentration.

  • 9 authors
·
Jun 11, 2025 2

VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text

We present a framework for learning multimodal representations from unlabeled data using convolution-free Transformer architectures. Specifically, our Video-Audio-Text Transformer (VATT) takes raw signals as inputs and extracts multimodal representations that are rich enough to benefit a variety of downstream tasks. We train VATT end-to-end from scratch using multimodal contrastive losses and evaluate its performance by the downstream tasks of video action recognition, audio event classification, image classification, and text-to-video retrieval. Furthermore, we study a modality-agnostic, single-backbone Transformer by sharing weights among the three modalities. We show that the convolution-free VATT outperforms state-of-the-art ConvNet-based architectures in the downstream tasks. Especially, VATT's vision Transformer achieves the top-1 accuracy of 82.1% on Kinetics-400, 83.6% on Kinetics-600, 72.7% on Kinetics-700, and 41.1% on Moments in Time, new records while avoiding supervised pre-training. Transferring to image classification leads to 78.7% top-1 accuracy on ImageNet compared to 64.7% by training the same Transformer from scratch, showing the generalizability of our model despite the domain gap between videos and images. VATT's audio Transformer also sets a new record on waveform-based audio event recognition by achieving the mAP of 39.4% on AudioSet without any supervised pre-training. VATT's source code is publicly available.

  • 7 authors
·
Apr 22, 2021