Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeReferee: Reference-aware Audiovisual Deepfake Detection
Since deepfakes generated by advanced generative models have rapidly posed serious threats, existing audiovisual deepfake detection approaches struggle to generalize to unseen forgeries. We propose a novel reference-aware audiovisual deepfake detection method, called Referee. Speaker-specific cues from only one-shot examples are leveraged to detect manipulations beyond spatiotemporal artifacts. By matching and aligning identity-related queries from reference and target content into cross-modal features, Referee jointly reasons about audiovisual synchrony and identity consistency. Extensive experiments on FakeAVCeleb, FaceForensics++, and KoDF demonstrate that Referee achieves state-of-the-art performance on cross-dataset and cross-language evaluation protocols. Experimental results highlight the importance of cross-modal identity verification for future deepfake detection. The code is available at https://github.com/ewha-mmai/referee.
Aligning Vision to Language: Text-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning
Multimodal reasoning in Large Language Models (LLMs) struggles with incomplete knowledge and hallucination artifacts, challenges that textual Knowledge Graphs (KGs) only partially mitigate due to their modality isolation. While Multimodal Knowledge Graphs (MMKGs) promise enhanced cross-modal understanding, their practical construction is impeded by semantic narrowness of manual text annotations and inherent noise in visual-semantic entity linkages. In this paper, we propose Vision-align-to-Language integrated Knowledge Graph (VaLiK), a novel approach for constructing MMKGs that enhances LLMs reasoning through cross-modal information supplementation. Specifically, we cascade pre-trained Vision-Language Models (VLMs) to align image features with text, transforming them into descriptions that encapsulate image-specific information. Furthermore, we developed a cross-modal similarity verification mechanism to quantify semantic consistency, effectively filtering out noise introduced during feature alignment. Even without manually annotated image captions, the refined descriptions alone suffice to construct the MMKG. Compared to conventional MMKGs construction paradigms, our approach achieves substantial storage efficiency gains while maintaining direct entity-to-image linkage capability. Experimental results on multimodal reasoning tasks demonstrate that LLMs augmented with VaLiK outperform previous state-of-the-art models. Our code is published at https://github.com/Wings-Of-Disaster/VaLiK.
Hydra: Structured Cross-Source Enhanced Large Language Model Reasoning
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge. Current hybrid RAG system retrieves evidence from both knowledge graphs (KGs) and text documents to support LLM reasoning. However, it faces challenges like handling multi-hop reasoning, multi-entity questions, multi-source verification, and effective graph utilization. To address these limitations, we present Hydra, a training-free framework that unifies graph topology, document semantics, and source reliability to support deep, faithful reasoning in LLMs. Hydra handles multi-hop and multi-entity problems through agent-driven exploration that combines structured and unstructured retrieval, increasing both diversity and precision of evidence. To tackle multi-source verification, Hydra uses a tri-factor cross-source verification (source trustworthiness assessment, cross-source corroboration, and entity-path alignment), to balance topic relevance with cross-modal agreement. By leveraging graph structure, Hydra fuses heterogeneous sources, guides efficient exploration, and prunes noise early. Comprehensive experiments on seven benchmark datasets show that Hydra achieves overall state-of-the-art results on all benchmarks with GPT-3.5, outperforming the strong hybrid baseline ToG-2 by an average of 20.3% and up to 30.1%. Furthermore, Hydra enables smaller models (e.g., Llama-3.1-8B) to achieve reasoning performance comparable to that of GPT-4-Turbo.
WMCodec: End-to-End Neural Speech Codec with Deep Watermarking for Authenticity Verification
Recent advances in speech spoofing necessitate stronger verification mechanisms in neural speech codecs to ensure authenticity. Current methods embed numerical watermarks before compression and extract them from reconstructed speech for verification, but face limitations such as separate training processes for the watermark and codec, and insufficient cross-modal information integration, leading to reduced watermark imperceptibility, extraction accuracy, and capacity. To address these issues, we propose WMCodec, the first neural speech codec to jointly train compression-reconstruction and watermark embedding-extraction in an end-to-end manner, optimizing both imperceptibility and extractability of the watermark. Furthermore, We design an iterative Attention Imprint Unit (AIU) for deeper feature integration of watermark and speech, reducing the impact of quantization noise on the watermark. Experimental results show WMCodec outperforms AudioSeal with Encodec in most quality metrics for watermark imperceptibility and consistently exceeds both AudioSeal with Encodec and reinforced TraceableSpeech in extraction accuracy of watermark. At bandwidth of 6 kbps with a watermark capacity of 16 bps, WMCodec maintains over 99% extraction accuracy under common attacks, demonstrating strong robustness.
MMM-Fact: A Multimodal, Multi-Domain Fact-Checking Dataset with Multi-Level Retrieval Difficulty
Misinformation and disinformation demand fact checking that goes beyond simple evidence-based reasoning. Existing benchmarks fall short: they are largely single modality (text-only), span short time horizons, use shallow evidence, cover domains unevenly, and often omit full articles -- obscuring models' real-world capability. We present MMM-Fact, a large-scale benchmark of 125,449 fact-checked statements (1995--2025) across multiple domains, each paired with the full fact-check article and multimodal evidence (text, images, videos, tables) from four fact-checking sites and one news outlet. To reflect verification effort, each statement is tagged with a retrieval-difficulty tier -- Basic (1--5 sources), Intermediate (6--10), and Advanced (>10) -- supporting fairness-aware evaluation for multi-step, cross-modal reasoning. The dataset adopts a three-class veracity scheme (true/false/not enough information) and enables tasks in veracity prediction, explainable fact-checking, complex evidence aggregation, and longitudinal analysis. Baselines with mainstream LLMs show MMM-Fact is markedly harder than prior resources, with performance degrading as evidence complexity rises. MMM-Fact offers a realistic, scalable benchmark for transparent, reliable, multimodal fact-checking.
VeriSciQA: An Auto-Verified Dataset for Scientific Visual Question Answering
Large Vision-Language Models (LVLMs) show promise for scientific applications, yet open-source models still struggle with Scientific Visual Question Answering (SVQA), namely answering questions about figures from scientific papers. A key bottleneck lies in the lack of public, large-scale, high-quality SVQA datasets. Although recent work uses LVLMs to synthesize data at scale, we identify systematic errors in their resulting QA pairs, stemming from LVLMs' inherent limitations and information asymmetry between figures and text. To address these challenges, we propose a verification-centric Generate-then-Verify framework that first generates QA pairs with figure-associated textual context, then applies cross-modal consistency checks against figures along with auxiliary filters to eliminate erroneous pairs. We instantiate this framework to curate VeriSciQA, a dataset of 20,351 QA pairs spanning 20 scientific domains and 12 figure types. VeriSciQA poses a challenging benchmark for open-source models, with a substantial accuracy gap between the leading open-source models (64%) and a proprietary model (82%). Moreover, models fine-tuned on VeriSciQA achieve consistent improvements on SVQA benchmarks, with performance gains that scale with data size and surpass models trained on existing datasets. Human evaluation further validates the superior correctness of VeriSciQA. Together, these evidences demonstrate that continued data expansion by our scalable framework can further advance SVQA capability in the open-source community.
Thinking Like an Expert:Multimodal Hypergraph-of-Thought (HoT) Reasoning to boost Foundation Modals
Reasoning ability is one of the most crucial capabilities of a foundation model, signifying its capacity to address complex reasoning tasks. Chain-of-Thought (CoT) technique is widely regarded as one of the effective methods for enhancing the reasoning ability of foundation models and has garnered significant attention. However, the reasoning process of CoT is linear, step-by-step, similar to personal logical reasoning, suitable for solving general and slightly complicated problems. On the contrary, the thinking pattern of an expert owns two prominent characteristics that cannot be handled appropriately in CoT, i.e., high-order multi-hop reasoning and multimodal comparative judgement. Therefore, the core motivation of this paper is transcending CoT to construct a reasoning paradigm that can think like an expert. The hyperedge of a hypergraph could connect various vertices, making it naturally suitable for modelling high-order relationships. Inspired by this, this paper innovatively proposes a multimodal Hypergraph-of-Thought (HoT) reasoning paradigm, which enables the foundation models to possess the expert-level ability of high-order multi-hop reasoning and multimodal comparative judgement. Specifically, a textual hypergraph-of-thought is constructed utilizing triple as the primary thought to model higher-order relationships, and a hyperedge-of-thought is generated through multi-hop walking paths to achieve multi-hop inference. Furthermore, we devise a visual hypergraph-of-thought to interact with the textual hypergraph-of-thought via Cross-modal Co-Attention Graph Learning for multimodal comparative verification. Experimentations on the ScienceQA benchmark demonstrate the proposed HoT-based T5 outperforms CoT-based GPT3.5 and chatGPT, which is on par with CoT-based GPT4 with a lower model size.
Poly-FEVER: A Multilingual Fact Verification Benchmark for Hallucination Detection in Large Language Models
Hallucinations in generative AI, particularly in Large Language Models (LLMs), pose a significant challenge to the reliability of multilingual applications. Existing benchmarks for hallucination detection focus primarily on English and a few widely spoken languages, lacking the breadth to assess inconsistencies in model performance across diverse linguistic contexts. To address this gap, we introduce Poly-FEVER, a large-scale multilingual fact verification benchmark specifically designed for evaluating hallucination detection in LLMs. Poly-FEVER comprises 77,973 labeled factual claims spanning 11 languages, sourced from FEVER, Climate-FEVER, and SciFact. It provides the first large-scale dataset tailored for analyzing hallucination patterns across languages, enabling systematic evaluation of LLMs such as ChatGPT and the LLaMA series. Our analysis reveals how topic distribution and web resource availability influence hallucination frequency, uncovering language-specific biases that impact model accuracy. By offering a multilingual benchmark for fact verification, Poly-FEVER facilitates cross-linguistic comparisons of hallucination detection and contributes to the development of more reliable, language-inclusive AI systems. The dataset is publicly available to advance research in responsible AI, fact-checking methodologies, and multilingual NLP, promoting greater transparency and robustness in LLM performance. The proposed Poly-FEVER is available at: https://huggingface.co/datasets/HanzhiZhang/Poly-FEVER.
Surfer 2: The Next Generation of Cross-Platform Computer Use Agents
Building agents that generalize across web, desktop, and mobile environments remains an open challenge, as prior systems rely on environment-specific interfaces that limit cross-platform deployment. We introduce Surfer 2, a unified architecture operating purely from visual observations that achieves state-of-the-art performance across all three environments. Surfer 2 integrates hierarchical context management, decoupled planning and execution, and self-verification with adaptive recovery, enabling reliable operation over long task horizons. Our system achieves 97.1% accuracy on WebVoyager, 69.6% on WebArena, 60.1% on OSWorld, and 87.1% on AndroidWorld, outperforming all prior systems without task-specific fine-tuning. With multiple attempts, Surfer 2 exceeds human performance on all benchmarks. These results demonstrate that systematic orchestration amplifies foundation model capabilities and enables general-purpose computer control through visual interaction alone, while calling for a next-generation vision language model to achieve Pareto-optimal cost-efficiency.
CrossAug: A Contrastive Data Augmentation Method for Debiasing Fact Verification Models
Fact verification datasets are typically constructed using crowdsourcing techniques due to the lack of text sources with veracity labels. However, the crowdsourcing process often produces undesired biases in data that cause models to learn spurious patterns. In this paper, we propose CrossAug, a contrastive data augmentation method for debiasing fact verification models. Specifically, we employ a two-stage augmentation pipeline to generate new claims and evidences from existing samples. The generated samples are then paired cross-wise with the original pair, forming contrastive samples that facilitate the model to rely less on spurious patterns and learn more robust representations. Experimental results show that our method outperforms the previous state-of-the-art debiasing technique by 3.6% on the debiased extension of the FEVER dataset, with a total performance boost of 10.13% from the baseline. Furthermore, we evaluate our approach in data-scarce settings, where models can be more susceptible to biases due to the lack of training data. Experimental results demonstrate that our approach is also effective at debiasing in these low-resource conditions, exceeding the baseline performance on the Symmetric dataset with just 1% of the original data.
Text-guided Visual Prompt DINO for Generic Segmentation
Recent advancements in multimodal vision models have highlighted limitations in late-stage feature fusion and suboptimal query selection for hybrid prompts open-world segmentation, alongside constraints from caption-derived vocabularies. To address these challenges, we propose Prompt-DINO, a text-guided visual Prompt DINO framework featuring three key innovations. First, we introduce an early fusion mechanism that unifies text/visual prompts and backbone features at the initial encoding stage, enabling deeper cross-modal interactions to resolve semantic ambiguities. Second, we design order-aligned query selection for DETR-based architectures, explicitly optimizing the structural alignment between text and visual queries during decoding to enhance semantic-spatial consistency. Third, we develop a generative data engine powered by the Recognize Anything via Prompting (RAP) model, which synthesizes 0.5B diverse training instances through a dual-path cross-verification pipeline, reducing label noise by 80.5% compared to conventional approaches. Extensive experiments demonstrate that Prompt-DINO achieves state-of-the-art performance on open-world detection benchmarks while significantly expanding semantic coverage beyond fixed-vocabulary constraints. Our work establishes a new paradigm for scalable multimodal detection and data generation in open-world scenarios. Data&Code are available at https://github.com/WeChatCV/WeVisionOne.
Power Battery Detection
Power batteries are essential components in electric vehicles, where internal structural defects can pose serious safety risks. We conduct a comprehensive study on a new task, power battery detection (PBD), which aims to localize the dense endpoints of cathode and anode plates from industrial X-ray images for quality inspection. Manual inspection is inefficient and error-prone, while traditional vision algorithms struggle with densely packed plates, low contrast, scale variation, and imaging artifacts. To address this issue and drive more attention into this meaningful task, we present PBD5K, the first large-scale benchmark for this task, consisting of 5,000 X-ray images from nine battery types with fine-grained annotations and eight types of real-world visual interference. To support scalable and consistent labeling, we develop an intelligent annotation pipeline that combines image filtering, model-assisted pre-labeling, cross-verification, and layered quality evaluation. We formulate PBD as a point-level segmentation problem and propose MDCNeXt, a model designed to extract and integrate multi-dimensional structure clues including point, line, and count information from the plate itself. To improve discrimination between plates and suppress visual interference, MDCNeXt incorporates two state space modules. The first is a prompt-filtered module that learns contrastive relationships guided by task-specific prompts. The second is a density-aware reordering module that refines segmentation in regions with high plate density. In addition, we propose a distance-adaptive mask generation strategy to provide robust supervision under varying spatial distributions of anode and cathode positions. The source code and datasets will be publicly available at https://github.com/Xiaoqi-Zhao-DLUT/X-ray-PBD{PBD5K}.
Rethinking Round-Trip Translation for Machine Translation Evaluation
Automatic evaluation on low-resource language translation suffers from a deficiency of parallel corpora. Round-trip translation could be served as a clever and straightforward technique to alleviate the requirement of the parallel evaluation corpus. However, there was an observation of obscure correlations between the evaluation scores by forward and round-trip translations in the era of statistical machine translation (SMT). In this paper, we report the surprising finding that round-trip translation can be used for automatic evaluation without the references. Firstly, our revisit on the round-trip translation in SMT evaluation unveils that its long-standing misunderstanding is essentially caused by copying mechanism. After removing copying mechanism in SMT, round-trip translation scores can appropriately reflect the forward translation performance. Then, we demonstrate the rectification is overdue as round-trip translation could benefit multiple machine translation evaluation tasks. To be more specific, round-trip translation could be used i) to predict corresponding forward translation scores; ii) to improve the performance of the recently advanced quality estimation model; and iii) to identify adversarial competitors in shared tasks via cross-system verification.
Verif.ai: Towards an Open-Source Scientific Generative Question-Answering System with Referenced and Verifiable Answers
In this paper, we present the current progress of the project Verif.ai, an open-source scientific generative question-answering system with referenced and verified answers. The components of the system are (1) an information retrieval system combining semantic and lexical search techniques over scientific papers (PubMed), (2) a fine-tuned generative model (Mistral 7B) taking top answers and generating answers with references to the papers from which the claim was derived, and (3) a verification engine that cross-checks the generated claim and the abstract or paper from which the claim was derived, verifying whether there may have been any hallucinations in generating the claim. We are reinforcing the generative model by providing the abstract in context, but in addition, an independent set of methods and models are verifying the answer and checking for hallucinations. Therefore, we believe that by using our method, we can make scientists more productive, while building trust in the use of generative language models in scientific environments, where hallucinations and misinformation cannot be tolerated.
Benchmarking Multimodal RAG through a Chart-based Document Question-Answering Generation Framework
Multimodal Retrieval-Augmented Generation (MRAG) enhances reasoning capabilities by integrating external knowledge. However, existing benchmarks primarily focus on simple image-text interactions, overlooking complex visual formats like charts that are prevalent in real-world applications. In this work, we introduce a novel task, Chart-based MRAG, to address this limitation. To semi-automatically generate high-quality evaluation samples, we propose CHARt-based document question-answering GEneration (CHARGE), a framework that produces evaluation data through structured keypoint extraction, crossmodal verification, and keypoint-based generation. By combining CHARGE with expert validation, we construct Chart-MRAG Bench, a comprehensive benchmark for chart-based MRAG evaluation, featuring 4,738 question-answering pairs across 8 domains from real-world documents. Our evaluation reveals three critical limitations in current approaches: (1) unified multimodal embedding retrieval methods struggles in chart-based scenarios, (2) even with ground-truth retrieval, state-of-the-art MLLMs achieve only 58.19% Correctness and 73.87% Coverage scores, and (3) MLLMs demonstrate consistent text-over-visual modality bias during Chart-based MRAG reasoning. The CHARGE and Chart-MRAG Bench are released at https://github.com/Nomothings/CHARGE.git.
