new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory

Transformer models have been successful in various sequence processing tasks, but the self-attention mechanism's computational cost limits its practicality for long sequences. Although there are existing attention variants that improve computational efficiency, they have a limited ability to abstract global information effectively based on their hand-crafted mixing strategies. On the other hand, state-space models (SSMs) are tailored for long sequences but cannot capture complicated local information. Therefore, the combination of them as a unified token mixer is a trend in recent long-sequence models. However, the linearized attention degrades performance significantly even when equipped with SSMs. To address the issue, we propose a new method called LongVQ. LongVQ uses the vector quantization (VQ) technique to compress the global abstraction as a length-fixed codebook, enabling the linear-time computation of the attention matrix. This technique effectively maintains dynamic global and local patterns, which helps to complement the lack of long-range dependency issues. Our experiments on the Long Range Arena benchmark, autoregressive language modeling, and image and speech classification demonstrate the effectiveness of LongVQ. Our model achieves significant improvements over other sequence models, including variants of Transformers, Convolutions, and recent State Space Models.

  • 6 authors
·
Apr 17, 2024 2

Think Visually, Reason Textually: Vision-Language Synergy in ARC

Abstract reasoning from minimal examples remains a core unsolved problem for frontier foundation models such as GPT-5 and Grok 4. These models still fail to infer structured transformation rules from a handful of examples, which is a key hallmark of human intelligence. The Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI) provides a rigorous testbed for this capability, demanding conceptual rule induction and transfer to novel tasks. Most existing methods treat ARC-AGI as a purely textual reasoning task, overlooking the fact that humans rely heavily on visual abstraction when solving such puzzles. However, our pilot experiments reveal a paradox: naively rendering ARC-AGI grids as images degrades performance due to imprecise rule execution. This leads to our central hypothesis that vision and language possess complementary strengths across distinct reasoning stages: vision supports global pattern abstraction and verification, whereas language specializes in symbolic rule formulation and precise execution. Building on this insight, we introduce two synergistic strategies: (1) Vision-Language Synergy Reasoning (VLSR), which decomposes ARC-AGI into modality-aligned subtasks; and (2) Modality-Switch Self-Correction (MSSC), which leverages vision to verify text-based reasoning for intrinsic error correction. Extensive experiments demonstrate that our approach yields up to a 4.33% improvement over text-only baselines across diverse flagship models and multiple ARC-AGI tasks. Our findings suggest that unifying visual abstraction with linguistic reasoning is a crucial step toward achieving generalizable, human-like intelligence in future foundation models. Source code will be released soon.

The Underappreciated Power of Vision Models for Graph Structural Understanding

Graph Neural Networks operate through bottom-up message-passing, fundamentally differing from human visual perception, which intuitively captures global structures first. We investigate the underappreciated potential of vision models for graph understanding, finding they achieve performance comparable to GNNs on established benchmarks while exhibiting distinctly different learning patterns. These divergent behaviors, combined with limitations of existing benchmarks that conflate domain features with topological understanding, motivate our introduction of GraphAbstract. This benchmark evaluates models' ability to perceive global graph properties as humans do: recognizing organizational archetypes, detecting symmetry, sensing connectivity strength, and identifying critical elements. Our results reveal that vision models significantly outperform GNNs on tasks requiring holistic structural understanding and maintain generalizability across varying graph scales, while GNNs struggle with global pattern abstraction and degrade with increasing graph size. This work demonstrates that vision models possess remarkable yet underutilized capabilities for graph structural understanding, particularly for problems requiring global topological awareness and scale-invariant reasoning. These findings open new avenues to leverage this underappreciated potential for developing more effective graph foundation models for tasks dominated by holistic pattern recognition.

  • 9 authors
·
Oct 27 5

Improving Prototypical Parts Abstraction for Case-Based Reasoning Explanations Designed for the Kidney Stone Type Recognition

The in-vivo identification of the kidney stone types during an ureteroscopy would be a major medical advance in urology, as it could reduce the time of the tedious renal calculi extraction process, while diminishing infection risks. Furthermore, such an automated procedure would make possible to prescribe anti-recurrence treatments immediately. Nowadays, only few experienced urologists are able to recognize the kidney stone types in the images of the videos displayed on a screen during the endoscopy. Thus, several deep learning (DL) models have recently been proposed to automatically recognize the kidney stone types using ureteroscopic images. However, these DL models are of black box nature whicl limits their applicability in clinical settings. This contribution proposes a case-based reasoning DL model which uses prototypical parts (PPs) and generates local and global descriptors. The PPs encode for each class (i.e., kidney stone type) visual feature information (hue, saturation, intensity and textures) similar to that used by biologists. The PPs are optimally generated due a new loss function used during the model training. Moreover, the local and global descriptors of PPs allow to explain the decisions ("what" information, "where in the images") in an understandable way for biologists and urologists. The proposed DL model has been tested on a database including images of the six most widespread kidney stone types. The overall average classification accuracy was 90.37. When comparing this results with that of the eight other DL models of the kidney stone state-of-the-art, it can be seen that the valuable gain in explanability was not reached at the expense of accuracy which was even slightly increased with respect to that (88.2) of the best method of the literature. These promising and interpretable results also encourage urologists to put their trust in AI-based solutions.

  • 8 authors
·
Sep 19, 2024

MEDUSA: Multi-scale Encoder-Decoder Self-Attention Deep Neural Network Architecture for Medical Image Analysis

Medical image analysis continues to hold interesting challenges given the subtle characteristics of certain diseases and the significant overlap in appearance between diseases. In this work, we explore the concept of self-attention for tackling such subtleties in and between diseases. To this end, we introduce MEDUSA, a multi-scale encoder-decoder self-attention mechanism tailored for medical image analysis. While self-attention deep convolutional neural network architectures in existing literature center around the notion of multiple isolated lightweight attention mechanisms with limited individual capacities being incorporated at different points in the network architecture, MEDUSA takes a significant departure from this notion by possessing a single, unified self-attention mechanism with significantly higher capacity with multiple attention heads feeding into different scales in the network architecture. To the best of the authors' knowledge, this is the first "single body, multi-scale heads" realization of self-attention and enables explicit global context amongst selective attention at different levels of representational abstractions while still enabling differing local attention context at individual levels of abstractions. With MEDUSA, we obtain state-of-the-art performance on multiple challenging medical image analysis benchmarks including COVIDx, RSNA RICORD, and RSNA Pneumonia Challenge when compared to previous work. Our MEDUSA model is publicly available.

  • 7 authors
·
Oct 12, 2021