- Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC) This work summarizes the results of the largest skin image analysis challenge in the world, hosted by the International Skin Imaging Collaboration (ISIC), a global partnership that has organized the world's largest public repository of dermoscopic images of skin. The challenge was hosted in 2018 at the Medical Image Computing and Computer Assisted Intervention (MICCAI) conference in Granada, Spain. The dataset included over 12,500 images across 3 tasks. 900 users registered for data download, 115 submitted to the lesion segmentation task, 25 submitted to the lesion attribute detection task, and 159 submitted to the disease classification task. Novel evaluation protocols were established, including a new test for segmentation algorithm performance, and a test for algorithm ability to generalize. Results show that top segmentation algorithms still fail on over 10% of images on average, and algorithms with equal performance on test data can have different abilities to generalize. This is an important consideration for agencies regulating the growing set of machine learning tools in the healthcare domain, and sets a new standard for future public challenges in healthcare. 12 authors · Feb 8, 2019
- Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC) This article describes the design, implementation, and results of the latest installment of the dermoscopic image analysis benchmark challenge. The goal is to support research and development of algorithms for automated diagnosis of melanoma, the most lethal skin cancer. The challenge was divided into 3 tasks: lesion segmentation, feature detection, and disease classification. Participation involved 593 registrations, 81 pre-submissions, 46 finalized submissions (including a 4-page manuscript), and approximately 50 attendees, making this the largest standardized and comparative study in this field to date. While the official challenge duration and ranking of participants has concluded, the dataset snapshots remain available for further research and development. 11 authors · Oct 13, 2017
- MULAN: Multitask Universal Lesion Analysis Network for Joint Lesion Detection, Tagging, and Segmentation When reading medical images such as a computed tomography (CT) scan, radiologists generally search across the image to find lesions, characterize and measure them, and then describe them in the radiological report. To automate this process, we propose a multitask universal lesion analysis network (MULAN) for joint detection, tagging, and segmentation of lesions in a variety of body parts, which greatly extends existing work of single-task lesion analysis on specific body parts. MULAN is based on an improved Mask R-CNN framework with three head branches and a 3D feature fusion strategy. It achieves the state-of-the-art accuracy in the detection and tagging tasks on the DeepLesion dataset, which contains 32K lesions in the whole body. We also analyze the relationship between the three tasks and show that tag predictions can improve detection accuracy via a score refinement layer. 7 authors · Aug 12, 2019
- EndoBench: A Comprehensive Evaluation of Multi-Modal Large Language Models for Endoscopy Analysis Endoscopic procedures are essential for diagnosing and treating internal diseases, and multi-modal large language models (MLLMs) are increasingly applied to assist in endoscopy analysis. However, current benchmarks are limited, as they typically cover specific endoscopic scenarios and a small set of clinical tasks, failing to capture the real-world diversity of endoscopic scenarios and the full range of skills needed in clinical workflows. To address these issues, we introduce EndoBench, the first comprehensive benchmark specifically designed to assess MLLMs across the full spectrum of endoscopic practice with multi-dimensional capacities. EndoBench encompasses 4 distinct endoscopic scenarios, 12 specialized clinical tasks with 12 secondary subtasks, and 5 levels of visual prompting granularities, resulting in 6,832 rigorously validated VQA pairs from 21 diverse datasets. Our multi-dimensional evaluation framework mirrors the clinical workflow--spanning anatomical recognition, lesion analysis, spatial localization, and surgical operations--to holistically gauge the perceptual and diagnostic abilities of MLLMs in realistic scenarios. We benchmark 23 state-of-the-art models, including general-purpose, medical-specialized, and proprietary MLLMs, and establish human clinician performance as a reference standard. Our extensive experiments reveal: (1) proprietary MLLMs outperform open-source and medical-specialized models overall, but still trail human experts; (2) medical-domain supervised fine-tuning substantially boosts task-specific accuracy; and (3) model performance remains sensitive to prompt format and clinical task complexity. EndoBench establishes a new standard for evaluating and advancing MLLMs in endoscopy, highlighting both progress and persistent gaps between current models and expert clinical reasoning. We publicly release our benchmark and code. 8 authors · May 29, 2025
2 The Effects of Image Pre- and Post-Processing, Wavelet Decomposition, and Local Binary Patterns on U-Nets for Skin Lesion Segmentation Skin cancer is a widespread, global, and potentially deadly disease, which over the last three decades has afflicted more lives in the USA than all other forms of cancer combined. There have been a lot of promising recent works utilizing deep network architectures, such as FCNs, U-Nets, and ResNets, for developing automated skin lesion segmentation. This paper investigates various pre- and post-processing techniques for improving the performance of U-Nets as measured by the Jaccard Index. The dataset provided as part of the "2017 ISBI Challenges on Skin Lesion Analysis Towards Melanoma Detection" was used for this evaluation and the performance of the finalist competitors was the standard for comparison. The pre-processing techniques employed in the proposed system included contrast enhancement, artifact removal, and vignette correction. More advanced image transformations, such as local binary patterns and wavelet decomposition, were also employed to augment the raw grayscale images used as network input features. While the performance of the proposed system fell short of the winners of the challenge, it was determined that using wavelet decomposition as an early transformation step improved the overall performance of the system over pre- and post-processing steps alone. 2 authors · Apr 30, 2018
- FunBench: Benchmarking Fundus Reading Skills of MLLMs Multimodal Large Language Models (MLLMs) have shown significant potential in medical image analysis. However, their capabilities in interpreting fundus images, a critical skill for ophthalmology, remain under-evaluated. Existing benchmarks lack fine-grained task divisions and fail to provide modular analysis of its two key modules, i.e., large language model (LLM) and vision encoder (VE). This paper introduces FunBench, a novel visual question answering (VQA) benchmark designed to comprehensively evaluate MLLMs' fundus reading skills. FunBench features a hierarchical task organization across four levels (modality perception, anatomy perception, lesion analysis, and disease diagnosis). It also offers three targeted evaluation modes: linear-probe based VE evaluation, knowledge-prompted LLM evaluation, and holistic evaluation. Experiments on nine open-source MLLMs plus GPT-4o reveal significant deficiencies in fundus reading skills, particularly in basic tasks such as laterality recognition. The results highlight the limitations of current MLLMs and emphasize the need for domain-specific training and improved LLMs and VEs. 3 authors · Mar 2, 2025
- UMIT: Unifying Medical Imaging Tasks via Vision-Language Models With the rapid advancement of deep learning, particularly in the field of medical image analysis, an increasing number of Vision-Language Models (VLMs) are being widely applied to solve complex health and biomedical challenges. However, existing research has primarily focused on specific tasks or single modalities, which limits their applicability and generalization across diverse medical scenarios. To address this challenge, we propose UMIT, a unified multi-modal, multi-task VLM designed specifically for medical imaging tasks. UMIT is able to solve various tasks, including visual question answering, disease detection, and medical report generation. In addition, it is applicable to multiple imaging modalities (e.g., X-ray, CT and PET), covering a wide range of applications from basic diagnostics to complex lesion analysis. Moreover, UMIT supports both English and Chinese, expanding its applicability globally and ensuring accessibility to healthcare services in different linguistic contexts. To enhance the model's adaptability and task-handling capability, we design a unique two-stage training strategy and fine-tune UMIT with designed instruction templates. Through extensive empirical evaluation, UMIT outperforms previous methods in five tasks across multiple datasets. The performance of UMIT indicates that it can significantly enhance diagnostic accuracy and workflow efficiency, thus providing effective solutions for medical imaging applications. 5 authors · Mar 20, 2025
- Large-scale modality-invariant foundation models for brain MRI analysis: Application to lesion segmentation The field of computer vision is undergoing a paradigm shift toward large-scale foundation model pre-training via self-supervised learning (SSL). Leveraging large volumes of unlabeled brain MRI data, such models can learn anatomical priors that improve few-shot performance in diverse neuroimaging tasks. However, most SSL frameworks are tailored to natural images, and their adaptation to capture multi-modal MRI information remains underexplored. This work proposes a modality-invariant representation learning setup and evaluates its effectiveness in stroke and epilepsy lesion segmentation, following large-scale pre-training. Experimental results suggest that despite successful cross-modality alignment, lesion segmentation primarily benefits from preserving fine-grained modality-specific features. Model checkpoints and code are made publicly available. 8 authors · Nov 14, 2025
2 Joint Liver and Hepatic Lesion Segmentation in MRI using a Hybrid CNN with Transformer Layers Deep learning-based segmentation of the liver and hepatic lesions therein steadily gains relevance in clinical practice due to the increasing incidence of liver cancer each year. Whereas various network variants with overall promising results in the field of medical image segmentation have been successfully developed over the last years, almost all of them struggle with the challenge of accurately segmenting hepatic lesions in magnetic resonance imaging (MRI). This led to the idea of combining elements of convolutional and transformer-based architectures to overcome the existing limitations. This work presents a hybrid network called SWTR-Unet, consisting of a pretrained ResNet, transformer blocks as well as a common Unet-style decoder path. This network was primarily applied to single-modality non-contrast-enhanced liver MRI and additionally to the publicly available computed tomography (CT) data of the liver tumor segmentation (LiTS) challenge to verify the applicability on other modalities. For a broader evaluation, multiple state-of-the-art networks were implemented and applied, ensuring a direct comparability. Furthermore, correlation analysis and an ablation study were carried out, to investigate various influencing factors on the segmentation accuracy of the presented method. With Dice scores of averaged 98+-2% for liver and 81+-28% lesion segmentation on the MRI dataset and 97+-2% and 79+-25%, respectively on the CT dataset, the proposed SWTR-Unet proved to be a precise approach for liver and hepatic lesion segmentation with state-of-the-art results for MRI and competing accuracy in CT imaging. The achieved segmentation accuracy was found to be on par with manually performed expert segmentations as indicated by inter-observer variabilities for liver lesion segmentation. In conclusion, the presented method could save valuable time and resources in clinical practice. 7 authors · Jan 26, 2022
- Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics Imaging features of knee articular cartilage have been shown to be potential imaging biomarkers for knee osteoarthritis. Despite recent methodological advancements in image analysis techniques like image segmentation, registration, and domain-specific image computing algorithms, only a few works focus on building fully automated pipelines for imaging feature extraction. In this study, we developed a deep-learning-based medical image analysis application for knee cartilage morphometrics, CartiMorph Toolbox (CMT). We proposed a 2-stage joint template learning and registration network, CMT-reg. We trained the model using the OAI-ZIB dataset and assessed its performance in template-to-image registration. The CMT-reg demonstrated competitive results compared to other state-of-the-art models. We integrated the proposed model into an automated pipeline for the quantification of cartilage shape and lesion (full-thickness cartilage loss, specifically). The toolbox provides a comprehensive, user-friendly solution for medical image analysis and data visualization. The software and models are available at https://github.com/YongchengYAO/CMT-AMAI24paper . 2 authors · Sep 11, 2024
- DERM12345: A Large, Multisource Dermatoscopic Skin Lesion Dataset with 38 Subclasses Skin lesion datasets provide essential information for understanding various skin conditions and developing effective diagnostic tools. They aid the artificial intelligence-based early detection of skin cancer, facilitate treatment planning, and contribute to medical education and research. Published large datasets have partially coverage the subclassifications of the skin lesions. This limitation highlights the need for more expansive and varied datasets to reduce false predictions and help improve the failure analysis for skin lesions. This study presents a diverse dataset comprising 12,345 dermatoscopic images with 38 subclasses of skin lesions collected in Turkiye which comprises different skin types in the transition zone between Europe and Asia. Each subgroup contains high-resolution photos and expert annotations, providing a strong and reliable basis for future research. The detailed analysis of each subgroup provided in this study facilitates targeted research endeavors and enhances the depth of understanding regarding the skin lesions. This dataset distinguishes itself through a diverse structure with 5 super classes, 15 main classes, 38 subclasses and its 12,345 high-resolution dermatoscopic images. 4 authors · Jun 11, 2024
- State-of-the-Art Stroke Lesion Segmentation at 1/1000th of Parameters Efficient and accurate whole-brain lesion segmentation remains a challenge in medical image analysis. In this work, we revisit MeshNet, a parameter-efficient segmentation model, and introduce a novel multi-scale dilation pattern with an encoder-decoder structure. This innovation enables capturing broad contextual information and fine-grained details without traditional downsampling, upsampling, or skip-connections. Unlike previous approaches processing subvolumes or slices, we operate directly on whole-brain 256^3 MRI volumes. Evaluations on the Aphasia Recovery Cohort (ARC) dataset demonstrate that MeshNet achieves superior or comparable DICE scores to state-of-the-art architectures such as MedNeXt and U-MAMBA at 1/1000th of parameters. Our results validate MeshNet's strong balance of efficiency and performance, making it particularly suitable for resource-limited environments such as web-based applications and opening new possibilities for the widespread deployment of advanced medical image analysis tools. 5 authors · Mar 7, 2025
- Refining Focus in AI for Lung Cancer: Comparing Lesion-Centric and Chest-Region Models with Performance Insights from Internal and External Validation Background: AI-based classification models are essential for improving lung cancer diagnosis. However, the relative performance of lesion-level versus chest-region models in internal and external datasets remains unclear. Purpose: This study evaluates the performance of lesion-level and chest-region models for lung cancer classification, comparing their effectiveness across internal Duke Lung Nodule Dataset 2024 (DLND24) and external (LUNA16, NLST) datasets, with a focus on subgroup analyses by demographics, histology, and imaging characteristics. Materials and Methods: Two AI models were trained: one using lesion-centric patches (64,64,64) and the other using chest-region patches (512,512,8). Internal validation was conducted on DLND24, while external validation utilized LUNA16 and NLST datasets. The models performances were assessed using AUC-ROC, with subgroup analyses for demographic, clinical, and imaging factors. Statistical comparisons were performed using DeLongs test. Gradient-based visualizations and probability distribution were further used for analysis. Results: The lesion-level model consistently outperformed the chest-region model across datasets. In internal validation, the lesion-level model achieved an AUC of 0.71(CI: 0.61-0.81), compared to 0.68(0.57-0.77) for the chest-region model. External validation showed similar trends, with AUCs of 0.90(0.87-0.92) and 0.81(0.79-0.82) on LUNA16 and NLST, respectively. Subgroup analyses revealed significant advantages for lesion-level models in certain histological subtypes (adenocarcinoma) and imaging conditions (CT manufacturers). Conclusion: Lesion-level models demonstrate superior classification performance, especially for external datasets and challenging subgroups, suggesting their clinical utility for precision lung cancer diagnostics. 1 authors · Nov 25, 2024
- MedVision: Dataset and Benchmark for Quantitative Medical Image Analysis Current vision-language models (VLMs) in medicine are primarily designed for categorical question answering (e.g., "Is this normal or abnormal?") or qualitative descriptive tasks. However, clinical decision-making often relies on quantitative assessments, such as measuring the size of a tumor or the angle of a joint, from which physicians draw their own diagnostic conclusions. This quantitative reasoning capability remains underexplored and poorly supported in existing VLMs. In this work, we introduce MedVision, a large-scale dataset and benchmark specifically designed to evaluate and improve VLMs on quantitative medical image analysis. MedVision spans 22 public datasets covering diverse anatomies and modalities, with 30.8 million image-annotation pairs. We focus on three representative quantitative tasks: (1) detection of anatomical structures and abnormalities, (2) tumor/lesion (T/L) size estimation, and (3) angle/distance (A/D) measurement. Our benchmarks show that current off-the-shelf VLMs perform poorly on these tasks. However, with supervised fine-tuning on MedVision, we significantly enhance their performance across detection, T/L estimation, and A/D measurement, demonstrating reduced error rates and improved precision. This work provides a foundation for developing VLMs with robust quantitative reasoning capabilities in medical imaging. Code and data are available at https://medvision-vlm.github.io. 6 authors · Nov 23, 2025
- MedGrad E-CLIP: Enhancing Trust and Transparency in AI-Driven Skin Lesion Diagnosis As deep learning models gain attraction in medical data, ensuring transparent and trustworthy decision-making is essential. In skin cancer diagnosis, while advancements in lesion detection and classification have improved accuracy, the black-box nature of these methods poses challenges in understanding their decision processes, leading to trust issues among physicians. This study leverages the CLIP (Contrastive Language-Image Pretraining) model, trained on different skin lesion datasets, to capture meaningful relationships between visual features and diagnostic criteria terms. To further enhance transparency, we propose a method called MedGrad E-CLIP, which builds on gradient-based E-CLIP by incorporating a weighted entropy mechanism designed for complex medical imaging like skin lesions. This approach highlights critical image regions linked to specific diagnostic descriptions. The developed integrated pipeline not only classifies skin lesions by matching corresponding descriptions but also adds an essential layer of explainability developed especially for medical data. By visually explaining how different features in an image relates to diagnostic criteria, this approach demonstrates the potential of advanced vision-language models in medical image analysis, ultimately improving transparency, robustness, and trust in AI-driven diagnostic systems. 2 authors · Jan 12, 2025
- A Textbook Remedy for Domain Shifts: Knowledge Priors for Medical Image Analysis While deep networks have achieved broad success in analyzing natural images, when applied to medical scans, they often fail in unexcepted situations. We investigate this challenge and focus on model sensitivity to domain shifts, such as data sampled from different hospitals or data confounded by demographic variables such as sex, race, etc, in the context of chest X-rays and skin lesion images. A key finding we show empirically is that existing visual backbones lack an appropriate prior from the architecture for reliable generalization in these settings. Taking inspiration from medical training, we propose giving deep networks a prior grounded in explicit medical knowledge communicated in natural language. To this end, we introduce Knowledge-enhanced Bottlenecks (KnoBo), a class of concept bottleneck models that incorporates knowledge priors that constrain it to reason with clinically relevant factors found in medical textbooks or PubMed. KnoBo uses retrieval-augmented language models to design an appropriate concept space paired with an automatic training procedure for recognizing the concept. We evaluate different resources of knowledge and recognition architectures on a broad range of domain shifts across 20 datasets. In our comprehensive evaluation with two imaging modalities, KnoBo outperforms fine-tuned models on confounded datasets by 32.4% on average. Finally, evaluations reveal that PubMed is a promising resource for making medical models less sensitive to domain shift, outperforming other resources on both diversity of information and final prediction performance. 8 authors · May 23, 2024
- Melanoma Detection using Adversarial Training and Deep Transfer Learning Skin lesion datasets consist predominantly of normal samples with only a small percentage of abnormal ones, giving rise to the class imbalance problem. Also, skin lesion images are largely similar in overall appearance owing to the low inter-class variability. In this paper, we propose a two-stage framework for automatic classification of skin lesion images using adversarial training and transfer learning toward melanoma detection. In the first stage, we leverage the inter-class variation of the data distribution for the task of conditional image synthesis by learning the inter-class mapping and synthesizing under-represented class samples from the over-represented ones using unpaired image-to-image translation. In the second stage, we train a deep convolutional neural network for skin lesion classification using the original training set combined with the newly synthesized under-represented class samples. The training of this classifier is carried out by minimizing the focal loss function, which assists the model in learning from hard examples, while down-weighting the easy ones. Experiments conducted on a dermatology image benchmark demonstrate the superiority of our proposed approach over several standard baseline methods, achieving significant performance improvements. Interestingly, we show through feature visualization and analysis that our method leads to context based lesion assessment that can reach an expert dermatologist level. 2 authors · Apr 14, 2020
- Citrus-V: Advancing Medical Foundation Models with Unified Medical Image Grounding for Clinical Reasoning Medical imaging provides critical evidence for clinical diagnosis, treatment planning, and surgical decisions, yet most existing imaging models are narrowly focused and require multiple specialized networks, limiting their generalization. Although large-scale language and multimodal models exhibit strong reasoning and multi-task capabilities, real-world clinical applications demand precise visual grounding, multimodal integration, and chain-of-thought reasoning. We introduce Citrus-V, a multimodal medical foundation model that combines image analysis with textual reasoning. The model integrates detection, segmentation, and multimodal chain-of-thought reasoning, enabling pixel-level lesion localization, structured report generation, and physician-like diagnostic inference in a single framework. We propose a novel multimodal training approach and release a curated open-source data suite covering reasoning, detection, segmentation, and document understanding tasks. Evaluations demonstrate that Citrus-V outperforms existing open-source medical models and expert-level imaging systems across multiple benchmarks, delivering a unified pipeline from visual grounding to clinical reasoning and supporting precise lesion quantification, automated reporting, and reliable second opinions. 11 authors · Sep 23, 2025
5 Med-R1: Reinforcement Learning for Generalizable Medical Reasoning in Vision-Language Models Vision-language models (VLMs) have advanced reasoning in natural scenes, but their role in medical imaging remains underexplored. Medical reasoning tasks demand robust image analysis and well-justified answers, posing challenges due to the complexity of medical images. Transparency and trustworthiness are essential for clinical adoption and regulatory compliance. We introduce Med-R1, a framework exploring reinforcement learning (RL) to enhance VLMs' generalizability and trustworthiness in medical reasoning. Leveraging the DeepSeek strategy, we employ Group Relative Policy Optimization (GRPO) to guide reasoning paths via reward signals. Unlike supervised fine-tuning (SFT), which often overfits and lacks generalization, RL fosters robust and diverse reasoning. Med-R1 is evaluated across eight medical imaging modalities: CT, MRI, Ultrasound, Dermoscopy, Fundus Photography, Optical Coherence Tomography (OCT), Microscopy, and X-ray Imaging. Compared to its base model, Qwen2-VL-2B, Med-R1 achieves a 29.94% accuracy improvement and outperforms Qwen2-VL-72B, which has 36 times more parameters. Testing across five question types-modality recognition, anatomy identification, disease diagnosis, lesion grading, and biological attribute analysis Med-R1 demonstrates superior generalization, exceeding Qwen2-VL-2B by 32.06% and surpassing Qwen2-VL-72B in question-type generalization. These findings show that RL improves medical reasoning and enables parameter-efficient models to outperform significantly larger ones. With interpretable reasoning outputs, Med-R1 represents a promising step toward generalizable, trustworthy, and clinically viable medical VLMs. 5 authors · Mar 18, 2025