Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
Subscribe3MDBench: Medical Multimodal Multi-agent Dialogue Benchmark
Large Vision-Language Models (LVLMs) are increasingly being explored for applications in telemedicine, yet their ability to engage with diverse patient behaviors remains underexplored. We introduce 3MDBench (Medical Multimodal Multi-agent Dialogue Benchmark), an open-source evaluation framework designed to assess LLM-driven medical consultations. Unlike existing benchmarks, 3MDBench simulates real-world patient variability by incorporating four temperament-driven Patient Agents and an Assessor Agent that evaluates diagnostic accuracy and dialogue quality. The benchmark integrates textual and image-based patient data across 34 common diagnoses, mirroring real-world telemedicine interactions. Under different diagnostic strategies, we evaluate state-of-the-art LVLMs. Our findings demonstrate that incorporating dialogue improves the F1 score from 50.4 to 54.2 compared to non-dialogue settings, underscoring the value of context-driven, information-seeking questioning. Additionally, we demonstrate that multimodal inputs enhance diagnostic efficiency. Image-supported models outperform text-only counterparts by raising the diagnostic F1 score from 52.8 to 54.2 in a similar dialogue setting. Finally, we suggest an approach that improves the diagnostic F1-score to 70.3 by training the CNN model on the diagnosis prediction task and incorporating its top-3 predictions into the LVLM context. 3MDBench provides a reproducible and extendable evaluation framework for AI-driven medical assistants. It offers insights into how patient temperament, dialogue strategies, and multimodal reasoning influence diagnosis quality. By addressing real-world complexities in telemedicine, our benchmark paves the way for more empathetic, reliable, and context-aware AI-driven healthcare solutions. The source code of our benchmark is publicly available: https://github.com/univanxx/3mdbench
LLMs for Doctors: Leveraging Medical LLMs to Assist Doctors, Not Replace Them
The recent success of Large Language Models (LLMs) has had a significant impact on the healthcare field, providing patients with medical advice, diagnostic information, and more. However, due to a lack of professional medical knowledge, patients are easily misled by generated erroneous information from LLMs, which may result in serious medical problems. To address this issue, we focus on tuning the LLMs to be medical assistants who collaborate with more experienced doctors. We first conduct a two-stage survey by inspiration-feedback to gain a broad understanding of the real needs of doctors for medical assistants. Based on this, we construct a Chinese medical dataset called DoctorFLAN to support the entire workflow of doctors, which includes 92K Q\&A samples from 22 tasks and 27 specialists. Moreover, we evaluate LLMs in doctor-oriented scenarios by constructing the DoctorFLAN-test containing 550 single-turn Q\&A and DotaBench containing 74 multi-turn conversations. The evaluation results indicate that being a medical assistant still poses challenges for existing open-source models, but DoctorFLAN can help them significantly. It demonstrates that the doctor-oriented dataset and benchmarks we construct can complement existing patient-oriented work and better promote medical LLMs research.
GPT-4 passes most of the 297 written Polish Board Certification Examinations
Introduction: Recently, the effectiveness of Large Language Models (LLMs) has increased rapidly, allowing them to be used in a great number of applications. However, the risks posed by the generation of false information through LLMs significantly limit their applications in sensitive areas such as healthcare, highlighting the necessity for rigorous validations to determine their utility and reliability. To date, no study has extensively compared the performance of LLMs on Polish medical examinations across a broad spectrum of specialties on a very large dataset. Objectives: This study evaluated the performance of three Generative Pretrained Transformer (GPT) models on the Polish Board Certification Exam (Pa\'nstwowy Egzamin Specjalizacyjny, PES) dataset, which consists of 297 tests. Methods: We developed a software program to download and process PES exams and tested the performance of GPT models using OpenAI Application Programming Interface. Results: Our findings reveal that GPT-3.5 did not pass any of the analyzed exams. In contrast, the GPT-4 models demonstrated the capability to pass the majority of the exams evaluated, with the most recent model, gpt-4-0125, successfully passing 222 (75%) of them. The performance of the GPT models varied significantly, displaying excellence in exams related to certain specialties while completely failing others. Conclusions: The significant progress and impressive performance of LLM models hold great promise for the increased application of AI in the field of medicine in Poland. For instance, this advancement could lead to the development of AI-based medical assistants for healthcare professionals, enhancing the efficiency and accuracy of medical services.
Gaze into the Heart: A Multi-View Video Dataset for rPPG and Health Biomarkers Estimation
Progress in remote PhotoPlethysmoGraphy (rPPG) is limited by the critical issues of existing publicly available datasets: small size, privacy concerns with facial videos, and lack of diversity in conditions. The paper introduces a novel comprehensive large-scale multi-view video dataset for rPPG and health biomarkers estimation. Our dataset comprises 3600 synchronized video recordings from 600 subjects, captured under varied conditions (resting and post-exercise) using multiple consumer-grade cameras at different angles. To enable multimodal analysis of physiological states, each recording is paired with a 100 Hz PPG signal and extended health metrics, such as electrocardiogram, arterial blood pressure, biomarkers, temperature, oxygen saturation, respiratory rate, and stress level. Using this data, we train an efficient rPPG model and compare its quality with existing approaches in cross-dataset scenarios. The public release of our dataset and model should significantly speed up the progress in the development of AI medical assistants.
MedXChat: Bridging CXR Modalities with a Unified Multimodal Large Model
Despite the success of Large Language Models (LLMs) in general image tasks, a gap persists in the medical field for a multimodal large model adept at handling the nuanced diversity of medical images. Addressing this, we propose MedXChat, a unified multimodal large model designed for seamless interactions between medical assistants and users. MedXChat encompasses three key functionalities: CXR(Chest X-ray)-to-Report generation, CXR-based visual question-answering (VQA), and Text-to-CXR synthesis. Our contributions are as follows. Firstly, our model showcases exceptional cross-task adaptability, displaying adeptness across all three defined tasks and outperforming the benchmark models on the MIMIC dataset in medical multimodal applications. Secondly, we introduce an innovative Text-to-CXR synthesis approach that utilizes instruction-following capabilities within the Stable Diffusion (SD) architecture. This technique integrates smoothly with the existing model framework, requiring no extra parameters, thereby maintaining the SD's generative strength while also bestowing upon it the capacity to render fine-grained medical images with high fidelity. Comprehensive experiments validate MedXChat's synergistic enhancement across all tasks. Our instruction data and model will be open-sourced.
Generalist Large Language Models Outperform Clinical Tools on Medical Benchmarks
Specialized clinical AI assistants are rapidly entering medical practice, often framed as safer or more reliable than general-purpose large language models (LLMs). Yet, unlike frontier models, these clinical tools are rarely subjected to independent, quantitative evaluation, creating a critical evidence gap despite their growing influence on diagnosis, triage, and guideline interpretation. We assessed two widely deployed clinical AI systems (OpenEvidence and UpToDate Expert AI) against three state-of-the-art generalist LLMs (GPT-5, Gemini 3 Pro, and Claude Sonnet 4.5) using a 1,000-item mini-benchmark combining MedQA (medical knowledge) and HealthBench (clinician-alignment) tasks. Generalist models consistently outperformed clinical tools, with GPT-5 achieving the highest scores, while OpenEvidence and UpToDate demonstrated deficits in completeness, communication quality, context awareness, and systems-based safety reasoning. These findings reveal that tools marketed for clinical decision support may often lag behind frontier LLMs, underscoring the urgent need for transparent, independent evaluation before deployment in patient-facing workflows.
MedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants
Recent advancements in mixed-modal generative models have enabled flexible integration of information across image-text content. These models have opened new avenues for developing unified biomedical assistants capable of analyzing biomedical images, answering complex questions about them, and predicting the impact of medical procedures on a patient's health. However, existing resources face challenges such as limited data availability, narrow domain coverage, and restricted sources (e.g., medical papers). To address these gaps, we present MedMax, the first large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models. With 1.47 million instances, MedMax encompasses a diverse range of tasks, including multimodal content generation (interleaved image-text data), biomedical image captioning and generation, visual chatting, and report understanding. These tasks span diverse medical domains such as radiology and histopathology. Subsequently, we fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements: a 26% gain over the Chameleon model and an 18.3% improvement over GPT-4o across 12 downstream biomedical visual question-answering tasks. Additionally, we introduce a unified evaluation suite for biomedical tasks, providing a robust framework to guide the development of next-generation mixed-modal biomedical AI assistants.
Adapting LLMs for the Medical Domain in Portuguese: A Study on Fine-Tuning and Model Evaluation
This study evaluates the performance of large language models (LLMs) as medical agents in Portuguese, aiming to develop a reliable and relevant virtual assistant for healthcare professionals. The HealthCareMagic-100k-en and MedQuAD datasets, translated from English using GPT-3.5, were used to fine-tune the ChatBode-7B model using the PEFT-QLoRA method. The InternLM2 model, with initial training on medical data, presented the best overall performance, with high precision and adequacy in metrics such as accuracy, completeness and safety. However, DrBode models, derived from ChatBode, exhibited a phenomenon of catastrophic forgetting of acquired medical knowledge. Despite this, these models performed frequently or even better in aspects such as grammaticality and coherence. A significant challenge was low inter-rater agreement, highlighting the need for more robust assessment protocols. This work paves the way for future research, such as evaluating multilingual models specific to the medical field, improving the quality of training data, and developing more consistent evaluation methodologies for the medical field.
MIRIAD: Augmenting LLMs with millions of medical query-response pairs
LLMs are bound to transform healthcare with advanced decision support and flexible chat assistants. However, LLMs are prone to generate inaccurate medical content. To ground LLMs in high-quality medical knowledge, LLMs have been equipped with external knowledge via RAG, where unstructured medical knowledge is split into small text chunks that can be selectively retrieved and integrated into the LLMs context. Yet, existing RAG pipelines rely on raw, unstructured medical text, which can be noisy, uncurated and difficult for LLMs to effectively leverage. Systematic approaches to organize medical knowledge to best surface it to LLMs are generally lacking. To address these challenges, we introduce MIRIAD, a large-scale, curated corpus of 5,821,948 medical QA pairs, each rephrased from and grounded in a passage from peer-reviewed medical literature using a semi-automated pipeline combining LLM generation, filtering, grounding, and human annotation. Unlike prior medical corpora, which rely on unstructured text, MIRIAD encapsulates web-scale medical knowledge in an operationalized query-response format, which enables more targeted retrieval. Experiments on challenging medical QA benchmarks show that augmenting LLMs with MIRIAD improves accuracy up to 6.7% compared to unstructured RAG baselines with the same source corpus and with the same amount of retrieved text. Moreover, MIRIAD improved the ability of LLMs to detect medical hallucinations by 22.5 to 37% (increase in F1 score). We further introduce MIRIAD-Atlas, an interactive map of MIRIAD spanning 56 medical disciplines, enabling clinical users to visually explore, search, and refine medical knowledge. MIRIAD promises to unlock a wealth of down-stream applications, including medical information retrievers, enhanced RAG applications, and knowledge-grounded chat interfaces, which ultimately enables more reliable LLM applications in healthcare.
VideoGameBunny: Towards vision assistants for video games
Large multimodal models (LMMs) hold substantial promise across various domains, from personal assistance in daily tasks to sophisticated applications like medical diagnostics. However, their capabilities have limitations in the video game domain, such as challenges with scene understanding, hallucinations, and inaccurate descriptions of video game content, especially in open-source models. This paper describes the development of VideoGameBunny, a LLaVA-style model based on Bunny, specifically tailored for understanding images from video games. We release intermediate checkpoints, training logs, and an extensive dataset comprising 185,259 video game images from 413 titles, along with 389,565 image-instruction pairs that include image captions, question-answer pairs, and a JSON representation of 16 elements of 136,974 images. Our experiments show that our high quality game-related data has the potential to make a relatively small model outperform the much larger state-of-the-art model LLaVa-1.6-34b (which has more than 4x the number of parameters). Our study paves the way for future research in video game understanding on tasks such as playing, commentary, and debugging. Code and data are available at https://videogamebunny.github.io/
MultiMed: Multilingual Medical Speech Recognition via Attention Encoder Decoder
Multilingual automatic speech recognition (ASR) in the medical domain serves as a foundational task for various downstream applications such as speech translation, spoken language understanding, and voice-activated assistants. This technology enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we introduce MultiMed, a collection of small-to-large end-to-end ASR models for the medical domain, spanning five languages: Vietnamese, English, German, French, and Mandarin Chinese, together with the corresponding real-world ASR dataset. To our best knowledge, MultiMed stands as the largest and the first multilingual medical ASR dataset, in terms of total duration, number of speakers, diversity of diseases, recording conditions, speaker roles, unique medical terms, accents, and ICD-10 codes. Secondly, we establish the empirical baselines, present the first reproducible study of multilinguality in medical ASR, conduct a layer-wise ablation study for end-to-end ASR training, and provide the first linguistic analysis for multilingual medical ASR. All code, data, and models are available online https://github.com/leduckhai/MultiMed/tree/master/MultiMed
MedAgentGym: Training LLM Agents for Code-Based Medical Reasoning at Scale
We introduce MedAgentGYM, the first publicly available training environment designed to enhance coding-based medical reasoning capabilities in large language model (LLM) agents. MedAgentGYM comprises 72,413 task instances across 129 categories derived from authentic real-world biomedical scenarios. Tasks are encapsulated within executable coding environments, each featuring detailed task descriptions, interactive feedback mechanisms, verifiable ground-truth annotations, and scalable training trajectory generation. Extensive benchmarking of over 30 LLMs reveals a notable performance disparity between commercial API-based models and open-source counterparts. Leveraging MedAgentGYM, Med-Copilot-7B achieves substantial performance gains through supervised fine-tuning (+36.44%) and continued reinforcement learning (+42.47%), emerging as an affordable and privacy-preserving alternative competitive with gpt-4o. By offering both a comprehensive benchmark and accessible, expandable training resources within unified execution environments, MedAgentGYM delivers an integrated platform to develop LLM-based coding assistants for advanced biomedical research and practice.
SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called SURE-VQA, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
MM-Skin: Enhancing Dermatology Vision-Language Model with an Image-Text Dataset Derived from Textbooks
Medical vision-language models (VLMs) have shown promise as clinical assistants across various medical fields. However, specialized dermatology VLM capable of delivering professional and detailed diagnostic analysis remains underdeveloped, primarily due to less specialized text descriptions in current dermatology multimodal datasets. To address this issue, we propose MM-Skin, the first large-scale multimodal dermatology dataset that encompasses 3 imaging modalities, including clinical, dermoscopic, and pathological and nearly 10k high-quality image-text pairs collected from professional textbooks. In addition, we generate over 27k diverse, instruction-following vision question answering (VQA) samples (9 times the size of current largest dermatology VQA dataset). Leveraging public datasets and MM-Skin, we developed SkinVL, a dermatology-specific VLM designed for precise and nuanced skin disease interpretation. Comprehensive benchmark evaluations of SkinVL on VQA, supervised fine-tuning (SFT) and zero-shot classification tasks across 8 datasets, reveal its exceptional performance for skin diseases in comparison to both general and medical VLM models. The introduction of MM-Skin and SkinVL offers a meaningful contribution to advancing the development of clinical dermatology VLM assistants. MM-Skin is available at https://github.com/ZwQ803/MM-Skin
MedMMV: A Controllable Multimodal Multi-Agent Framework for Reliable and Verifiable Clinical Reasoning
Recent progress in multimodal large language models (MLLMs) has demonstrated promising performance on medical benchmarks and in preliminary trials as clinical assistants. Yet, our pilot audit of diagnostic cases uncovers a critical failure mode: instability in early evidence interpretation precedes hallucination, creating branching reasoning trajectories that cascade into globally inconsistent conclusions. This highlights the need for clinical reasoning agents that constrain stochasticity and hallucination while producing auditable decision flows. We introduce MedMMV, a controllable multimodal multi-agent framework for reliable and verifiable clinical reasoning. MedMMV stabilizes reasoning through diversified short rollouts, grounds intermediate steps in a structured evidence graph under the supervision of a Hallucination Detector, and aggregates candidate paths with a Combined Uncertainty scorer. On six medical benchmarks, MedMMV improves accuracy by up to 12.7% and, more critically, demonstrates superior reliability. Blind physician evaluations confirm that MedMMV substantially increases reasoning truthfulness without sacrificing informational content. By controlling instability through a verifiable, multi-agent process, our framework provides a robust path toward deploying trustworthy AI systems in high-stakes domains like clinical decision support.
Multi Agent based Medical Assistant for Edge Devices
Large Action Models (LAMs) have revolutionized intelligent automation, but their application in healthcare faces challenges due to privacy concerns, latency, and dependency on internet access. This report introduces an ondevice, multi-agent healthcare assistant that overcomes these limitations. The system utilizes smaller, task-specific agents to optimize resources, ensure scalability and high performance. Our proposed system acts as a one-stop solution for health care needs with features like appointment booking, health monitoring, medication reminders, and daily health reporting. Powered by the Qwen Code Instruct 2.5 7B model, the Planner and Caller Agents achieve an average RougeL score of 85.5 for planning and 96.5 for calling for our tasks while being lightweight for on-device deployment. This innovative approach combines the benefits of ondevice systems with multi-agent architectures, paving the way for user-centric healthcare solutions.
GigaPevt: Multimodal Medical Assistant
Building an intelligent and efficient medical assistant is still a challenging AI problem. The major limitation comes from the data modality scarceness, which reduces comprehensive patient perception. This demo paper presents the GigaPevt, the first multimodal medical assistant that combines the dialog capabilities of large language models with specialized medical models. Such an approach shows immediate advantages in dialog quality and metric performance, with a 1.18% accuracy improvement in the question-answering task.
A Pressure Ulcer Care System For Remote Medical Assistance: Residual U-Net with an Attention Model Based for Wound Area Segmentation
Increasing numbers of patients with disabilities or elderly people with mobility issues often suffer from a pressure ulcer. The affected areas need regular checks, but they have a difficulty in accessing a hospital. Some remote diagnosis systems are being used for them, but there are limitations in checking a patient's status regularly. In this paper, we present a remote medical assistant that can help pressure ulcer management with image processing techniques. The proposed system includes a mobile application with a deep learning model for wound segmentation and analysis. As there are not enough data to train the deep learning model, we make use of a pretrained model from a relevant domain and data augmentation that is appropriate for this task. First of all, an image preprocessing method using bilinear interpolation is used to resize images and normalize the images. Second, for data augmentation, we use rotation, reflection, and a watershed algorithm. Third, we use a pretrained deep learning model generated from skin wound images similar to pressure ulcer images. Finally, we added an attention module that can provide hints on the pressure ulcer image features. The resulting model provides an accuracy of 99.0%, an intersection over union (IoU) of 99.99%, and a dice similarity coefficient (DSC) of 93.4% for pressure ulcer segmentation, which is better than existing results.
SilVar-Med: A Speech-Driven Visual Language Model for Explainable Abnormality Detection in Medical Imaging
Medical Visual Language Models have shown great potential in various healthcare applications, including medical image captioning and diagnostic assistance. However, most existing models rely on text-based instructions, limiting their usability in real-world clinical environments especially in scenarios such as surgery, text-based interaction is often impractical for physicians. In addition, current medical image analysis models typically lack comprehensive reasoning behind their predictions, which reduces their reliability for clinical decision-making. Given that medical diagnosis errors can have life-changing consequences, there is a critical need for interpretable and rational medical assistance. To address these challenges, we introduce an end-to-end speech-driven medical VLM, SilVar-Med, a multimodal medical image assistant that integrates speech interaction with VLMs, pioneering the task of voice-based communication for medical image analysis. In addition, we focus on the interpretation of the reasoning behind each prediction of medical abnormalities with a proposed reasoning dataset. Through extensive experiments, we demonstrate a proof-of-concept study for reasoning-driven medical image interpretation with end-to-end speech interaction. We believe this work will advance the field of medical AI by fostering more transparent, interactive, and clinically viable diagnostic support systems. Our code and dataset are publicly available at SiVar-Med.
ArGen: Auto-Regulation of Generative AI via GRPO and Policy-as-Code
This paper introduces ArGen (Auto-Regulation of Generative AI systems), a framework for aligning Large Language Models (LLMs) with complex sets of configurable, machine-readable rules spanning ethical principles, operational safety protocols, and regulatory compliance standards. Moving beyond just preference-based alignment, ArGen is designed to ensure LLMs adhere to these multifaceted policies through a novel synthesis of principle-based automated reward scoring, Group Relative Policy Optimisation (GRPO), and an Open Policy Agent (OPA) inspired governance layer. This approach provides the technical foundation for achieving and demonstrating compliance with diverse and nuanced governance requirements. To showcase the framework's capability to operationalize a deeply nuanced and culturally-specific value system, we present an in-depth case study: the development of a medical AI assistant guided by principles from Dharmic ethics (such as Ahimsa and Dharma), as derived from texts like the Bhagavad Gita. This challenging application demonstrates ArGen's adaptability, achieving a 70.9% improvement in domain-scope adherence over the baseline. Through our open-source repository, we show that ArGen's methodology offers a path to 'Governable Al' systems that are technically proficient, ethically robust, and verifiably compliant for safe deployment in diverse global contexts.
MedCodER: A Generative AI Assistant for Medical Coding
Medical coding is essential for standardizing clinical data and communication but is often time-consuming and prone to errors. Traditional Natural Language Processing (NLP) methods struggle with automating coding due to the large label space, lengthy text inputs, and the absence of supporting evidence annotations that justify code selection. Recent advancements in Generative Artificial Intelligence (AI) offer promising solutions to these challenges. In this work, we introduce MedCodER, a Generative AI framework for automatic medical coding that leverages extraction, retrieval, and re-ranking techniques as core components. MedCodER achieves a micro-F1 score of 0.60 on International Classification of Diseases (ICD) code prediction, significantly outperforming state-of-the-art methods. Additionally, we present a new dataset containing medical records annotated with disease diagnoses, ICD codes, and supporting evidence texts (https://doi.org/10.5281/zenodo.13308316). Ablation tests confirm that MedCodER's performance depends on the integration of each of its aforementioned components, as performance declines when these components are evaluated in isolation.
