Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLumina-Video: Efficient and Flexible Video Generation with Multi-scale Next-DiT
Recent advancements have established Diffusion Transformers (DiTs) as a dominant framework in generative modeling. Building on this success, Lumina-Next achieves exceptional performance in the generation of photorealistic images with Next-DiT. However, its potential for video generation remains largely untapped, with significant challenges in modeling the spatiotemporal complexity inherent to video data. To address this, we introduce Lumina-Video, a framework that leverages the strengths of Next-DiT while introducing tailored solutions for video synthesis. Lumina-Video incorporates a Multi-scale Next-DiT architecture, which jointly learns multiple patchifications to enhance both efficiency and flexibility. By incorporating the motion score as an explicit condition, Lumina-Video also enables direct control of generated videos' dynamic degree. Combined with a progressive training scheme with increasingly higher resolution and FPS, and a multi-source training scheme with mixed natural and synthetic data, Lumina-Video achieves remarkable aesthetic quality and motion smoothness at high training and inference efficiency. We additionally propose Lumina-V2A, a video-to-audio model based on Next-DiT, to create synchronized sounds for generated videos. Codes are released at https://www.github.com/Alpha-VLLM/Lumina-Video.
Planning with Sketch-Guided Verification for Physics-Aware Video Generation
Recent video generation approaches increasingly rely on planning intermediate control signals such as object trajectories to improve temporal coherence and motion fidelity. However, these methods mostly employ single-shot plans that are typically limited to simple motions, or iterative refinement which requires multiple calls to the video generator, incuring high computational cost. To overcome these limitations, we propose SketchVerify, a training-free, sketch-verification-based planning framework that improves motion planning quality with more dynamically coherent trajectories (i.e., physically plausible and instruction-consistent motions) prior to full video generation by introducing a test-time sampling and verification loop. Given a prompt and a reference image, our method predicts multiple candidate motion plans and ranks them using a vision-language verifier that jointly evaluates semantic alignment with the instruction and physical plausibility. To efficiently score candidate motion plans, we render each trajectory as a lightweight video sketch by compositing objects over a static background, which bypasses the need for expensive, repeated diffusion-based synthesis while achieving comparable performance. We iteratively refine the motion plan until a satisfactory one is identified, which is then passed to the trajectory-conditioned generator for final synthesis. Experiments on WorldModelBench and PhyWorldBench demonstrate that our method significantly improves motion quality, physical realism, and long-term consistency compared to competitive baselines while being substantially more efficient. Our ablation study further shows that scaling up the number of trajectory candidates consistently enhances overall performance.
First Order Motion Model for Image Animation
Image animation consists of generating a video sequence so that an object in a source image is animated according to the motion of a driving video. Our framework addresses this problem without using any annotation or prior information about the specific object to animate. Once trained on a set of videos depicting objects of the same category (e.g. faces, human bodies), our method can be applied to any object of this class. To achieve this, we decouple appearance and motion information using a self-supervised formulation. To support complex motions, we use a representation consisting of a set of learned keypoints along with their local affine transformations. A generator network models occlusions arising during target motions and combines the appearance extracted from the source image and the motion derived from the driving video. Our framework scores best on diverse benchmarks and on a variety of object categories. Our source code is publicly available.
Kineo: Calibration-Free Metric Motion Capture From Sparse RGB Cameras
Markerless multiview motion capture is often constrained by the need for precise camera calibration, limiting accessibility for non-experts and in-the-wild captures. Existing calibration-free approaches mitigate this requirement but suffer from high computational cost and reduced reconstruction accuracy. We present Kineo, a fully automatic, calibration-free pipeline for markerless motion capture from videos captured by unsynchronized, uncalibrated, consumer-grade RGB cameras. Kineo leverages 2D keypoints from off-the-shelf detectors to simultaneously calibrate cameras, including Brown-Conrady distortion coefficients, and reconstruct 3D keypoints and dense scene point maps at metric scale. A confidence-driven spatio-temporal keypoint sampling strategy, combined with graph-based global optimization, ensures robust calibration at a fixed computational cost independent of sequence length. We further introduce a pairwise reprojection consensus score to quantify 3D reconstruction reliability for downstream tasks. Evaluations on EgoHumans and Human3.6M demonstrate substantial improvements over prior calibration-free methods. Compared to previous state-of-the-art approaches, Kineo reduces camera translation error by approximately 83-85%, camera angular error by 86-92%, and world mean-per-joint error (W-MPJPE) by 83-91%. Kineo is also efficient in real-world scenarios, processing multi-view sequences faster than their duration in specific configuration (e.g., 36min to process 1h20min of footage). The full pipeline and evaluation code are openly released to promote reproducibility and practical adoption at https://liris-xr.github.io/kineo/.
FILM: Frame Interpolation for Large Motion
We present a frame interpolation algorithm that synthesizes multiple intermediate frames from two input images with large in-between motion. Recent methods use multiple networks to estimate optical flow or depth and a separate network dedicated to frame synthesis. This is often complex and requires scarce optical flow or depth ground-truth. In this work, we present a single unified network, distinguished by a multi-scale feature extractor that shares weights at all scales, and is trainable from frames alone. To synthesize crisp and pleasing frames, we propose to optimize our network with the Gram matrix loss that measures the correlation difference between feature maps. Our approach outperforms state-of-the-art methods on the Xiph large motion benchmark. We also achieve higher scores on Vimeo-90K, Middlebury and UCF101, when comparing to methods that use perceptual losses. We study the effect of weight sharing and of training with datasets of increasing motion range. Finally, we demonstrate our model's effectiveness in synthesizing high quality and temporally coherent videos on a challenging near-duplicate photos dataset. Codes and pre-trained models are available at https://film-net.github.io.
SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer
Recent advances in 2D/3D generative models enable the generation of dynamic 3D objects from a single-view video. Existing approaches utilize score distillation sampling to form the dynamic scene as dynamic NeRF or dense 3D Gaussians. However, these methods struggle to strike a balance among reference view alignment, spatio-temporal consistency, and motion fidelity under single-view conditions due to the implicit nature of NeRF or the intricate dense Gaussian motion prediction. To address these issues, this paper proposes an efficient, sparse-controlled video-to-4D framework named SC4D, that decouples motion and appearance to achieve superior video-to-4D generation. Moreover, we introduce Adaptive Gaussian (AG) initialization and Gaussian Alignment (GA) loss to mitigate shape degeneration issue, ensuring the fidelity of the learned motion and shape. Comprehensive experimental results demonstrate that our method surpasses existing methods in both quality and efficiency. In addition, facilitated by the disentangled modeling of motion and appearance of SC4D, we devise a novel application that seamlessly transfers the learned motion onto a diverse array of 4D entities according to textual descriptions.
Motion Consistency Model: Accelerating Video Diffusion with Disentangled Motion-Appearance Distillation
Image diffusion distillation achieves high-fidelity generation with very few sampling steps. However, applying these techniques directly to video diffusion often results in unsatisfactory frame quality due to the limited visual quality in public video datasets. This affects the performance of both teacher and student video diffusion models. Our study aims to improve video diffusion distillation while improving frame appearance using abundant high-quality image data. We propose motion consistency model (MCM), a single-stage video diffusion distillation method that disentangles motion and appearance learning. Specifically, MCM includes a video consistency model that distills motion from the video teacher model, and an image discriminator that enhances frame appearance to match high-quality image data. This combination presents two challenges: (1) conflicting frame learning objectives, as video distillation learns from low-quality video frames while the image discriminator targets high-quality images; and (2) training-inference discrepancies due to the differing quality of video samples used during training and inference. To address these challenges, we introduce disentangled motion distillation and mixed trajectory distillation. The former applies the distillation objective solely to the motion representation, while the latter mitigates training-inference discrepancies by mixing distillation trajectories from both the low- and high-quality video domains. Extensive experiments show that our MCM achieves the state-of-the-art video diffusion distillation performance. Additionally, our method can enhance frame quality in video diffusion models, producing frames with high aesthetic scores or specific styles without corresponding video data.
Efficient Video Diffusion Models via Content-Frame Motion-Latent Decomposition
Video diffusion models have recently made great progress in generation quality, but are still limited by the high memory and computational requirements. This is because current video diffusion models often attempt to process high-dimensional videos directly. To tackle this issue, we propose content-motion latent diffusion model (CMD), a novel efficient extension of pretrained image diffusion models for video generation. Specifically, we propose an autoencoder that succinctly encodes a video as a combination of a content frame (like an image) and a low-dimensional motion latent representation. The former represents the common content, and the latter represents the underlying motion in the video, respectively. We generate the content frame by fine-tuning a pretrained image diffusion model, and we generate the motion latent representation by training a new lightweight diffusion model. A key innovation here is the design of a compact latent space that can directly utilizes a pretrained image diffusion model, which has not been done in previous latent video diffusion models. This leads to considerably better quality generation and reduced computational costs. For instance, CMD can sample a video 7.7times faster than prior approaches by generating a video of 512times1024 resolution and length 16 in 3.1 seconds. Moreover, CMD achieves an FVD score of 212.7 on WebVid-10M, 27.3% better than the previous state-of-the-art of 292.4.
Motion-Aware Concept Alignment for Consistent Video Editing
We introduce MoCA-Video (Motion-Aware Concept Alignment in Video), a training-free framework bridging the gap between image-domain semantic mixing and video. Given a generated video and a user-provided reference image, MoCA-Video injects the semantic features of the reference image into a specific object within the video, while preserving the original motion and visual context. Our approach leverages a diagonal denoising schedule and class-agnostic segmentation to detect and track objects in the latent space and precisely control the spatial location of the blended objects. To ensure temporal coherence, we incorporate momentum-based semantic corrections and gamma residual noise stabilization for smooth frame transitions. We evaluate MoCA's performance using the standard SSIM, image-level LPIPS, temporal LPIPS, and introduce a novel metric CASS (Conceptual Alignment Shift Score) to evaluate the consistency and effectiveness of the visual shifts between the source prompt and the modified video frames. Using self-constructed dataset, MoCA-Video outperforms current baselines, achieving superior spatial consistency, coherent motion, and a significantly higher CASS score, despite having no training or fine-tuning. MoCA-Video demonstrates that structured manipulation in the diffusion noise trajectory allows for controllable, high-quality video synthesis.
DreamMotion: Space-Time Self-Similarity Score Distillation for Zero-Shot Video Editing
Text-driven diffusion-based video editing presents a unique challenge not encountered in image editing literature: establishing real-world motion. Unlike existing video editing approaches, here we focus on score distillation sampling to circumvent the standard reverse diffusion process and initiate optimization from videos that already exhibit natural motion. Our analysis reveals that while video score distillation can effectively introduce new content indicated by target text, it can also cause significant structure and motion deviation. To counteract this, we propose to match space-time self-similarities of the original video and the edited video during the score distillation. Thanks to the use of score distillation, our approach is model-agnostic, which can be applied for both cascaded and non-cascaded video diffusion frameworks. Through extensive comparisons with leading methods, our approach demonstrates its superiority in altering appearances while accurately preserving the original structure and motion.
DynVideo-E: Harnessing Dynamic NeRF for Large-Scale Motion- and View-Change Human-Centric Video Editing
Despite remarkable research advances in diffusion-based video editing, existing methods are limited to short-length videos due to the contradiction between long-range consistency and frame-wise editing. Recent approaches attempt to tackle this challenge by introducing video-2D representations to degrade video editing to image editing. However, they encounter significant difficulties in handling large-scale motion- and view-change videos especially for human-centric videos. This motivates us to introduce the dynamic Neural Radiance Fields (NeRF) as the human-centric video representation to ease the video editing problem to a 3D space editing task. As such, editing can be performed in the 3D spaces and propagated to the entire video via the deformation field. To provide finer and direct controllable editing, we propose the image-based 3D space editing pipeline with a set of effective designs. These include multi-view multi-pose Score Distillation Sampling (SDS) from both 2D personalized diffusion priors and 3D diffusion priors, reconstruction losses on the reference image, text-guided local parts super-resolution, and style transfer for 3D background space. Extensive experiments demonstrate that our method, dubbed as DynVideo-E, significantly outperforms SOTA approaches on two challenging datasets by a large margin of 50% ~ 95% in terms of human preference. Compelling video comparisons are provided in the project page https://showlab.github.io/DynVideo-E/. Our code and data will be released to the community.
PianoMotion10M: Dataset and Benchmark for Hand Motion Generation in Piano Performance
Recently, artificial intelligence techniques for education have been received increasing attentions, while it still remains an open problem to design the effective music instrument instructing systems. Although key presses can be directly derived from sheet music, the transitional movements among key presses require more extensive guidance in piano performance. In this work, we construct a piano-hand motion generation benchmark to guide hand movements and fingerings for piano playing. To this end, we collect an annotated dataset, PianoMotion10M, consisting of 116 hours of piano playing videos from a bird's-eye view with 10 million annotated hand poses. We also introduce a powerful baseline model that generates hand motions from piano audios through a position predictor and a position-guided gesture generator. Furthermore, a series of evaluation metrics are designed to assess the performance of the baseline model, including motion similarity, smoothness, positional accuracy of left and right hands, and overall fidelity of movement distribution. Despite that piano key presses with respect to music scores or audios are already accessible, PianoMotion10M aims to provide guidance on piano fingering for instruction purposes. The source code and dataset can be accessed at https://github.com/agnJason/PianoMotion10M.
SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
STR-Match: Matching SpatioTemporal Relevance Score for Training-Free Video Editing
Previous text-guided video editing methods often suffer from temporal inconsistency, motion distortion, and-most notably-limited domain transformation. We attribute these limitations to insufficient modeling of spatiotemporal pixel relevance during the editing process. To address this, we propose STR-Match, a training-free video editing algorithm that produces visually appealing and spatiotemporally coherent videos through latent optimization guided by our novel STR score. The score captures spatiotemporal pixel relevance across adjacent frames by leveraging 2D spatial attention and 1D temporal modules in text-to-video (T2V) diffusion models, without the overhead of computationally expensive 3D attention mechanisms. Integrated into a latent optimization framework with a latent mask, STR-Match generates temporally consistent and visually faithful videos, maintaining strong performance even under significant domain transformations while preserving key visual attributes of the source. Extensive experiments demonstrate that STR-Match consistently outperforms existing methods in both visual quality and spatiotemporal consistency.
Guided Attention for Interpretable Motion Captioning
While much effort has been invested in generating human motion from text, relatively few studies have been dedicated to the reverse direction, that is, generating text from motion. Much of the research focuses on maximizing generation quality without any regard for the interpretability of the architectures, particularly regarding the influence of particular body parts in the generation and the temporal synchronization of words with specific movements and actions. This study explores the combination of movement encoders with spatio-temporal attention models and proposes strategies to guide the attention during training to highlight perceptually pertinent areas of the skeleton in time. We show that adding guided attention with adaptive gate leads to interpretable captioning while improving performance compared to higher parameter-count non-interpretable SOTA systems. On the KIT MLD dataset, we obtain a BLEU@4 of 24.4% (SOTA+6%), a ROUGE-L of 58.30% (SOTA +14.1%), a CIDEr of 112.10 (SOTA +32.6) and a Bertscore of 41.20% (SOTA +18.20%). On HumanML3D, we obtain a BLEU@4 of 25.00 (SOTA +2.7%), a ROUGE-L score of 55.4% (SOTA +6.1%), a CIDEr of 61.6 (SOTA -10.9%), a Bertscore of 40.3% (SOTA +2.5%). Our code implementation and reproduction details will be soon available at https://github.com/rd20karim/M2T-Interpretable/tree/main.
Zero-Shot Video Editing through Adaptive Sliding Score Distillation
The burgeoning field of text-based video generation (T2V) has reignited significant interest in the research of controllable video editing. Although pre-trained T2V-based editing models have achieved efficient editing capabilities, current works are still plagued by two major challenges. Firstly, the inherent limitations of T2V models lead to content inconsistencies and motion discontinuities between frames. Secondly, the notorious issue of over-editing significantly disrupts areas that are intended to remain unaltered. To address these challenges, our work aims to explore a robust video-based editing paradigm based on score distillation. Specifically, we propose an Adaptive Sliding Score Distillation strategy, which not only enhances the stability of T2V supervision but also incorporates both global and local video guidance to mitigate the impact of generation errors. Additionally, we modify the self-attention layers during the editing process to further preserve the key features of the original video. Extensive experiments demonstrate that these strategies enable us to effectively address the aforementioned challenges, achieving superior editing performance compared to existing state-of-the-art methods.
EG4D: Explicit Generation of 4D Object without Score Distillation
In recent years, the increasing demand for dynamic 3D assets in design and gaming applications has given rise to powerful generative pipelines capable of synthesizing high-quality 4D objects. Previous methods generally rely on score distillation sampling (SDS) algorithm to infer the unseen views and motion of 4D objects, thus leading to unsatisfactory results with defects like over-saturation and Janus problem. Therefore, inspired by recent progress of video diffusion models, we propose to optimize a 4D representation by explicitly generating multi-view videos from one input image. However, it is far from trivial to handle practical challenges faced by such a pipeline, including dramatic temporal inconsistency, inter-frame geometry and texture diversity, and semantic defects brought by video generation results. To address these issues, we propose DG4D, a novel multi-stage framework that generates high-quality and consistent 4D assets without score distillation. Specifically, collaborative techniques and solutions are developed, including an attention injection strategy to synthesize temporal-consistent multi-view videos, a robust and efficient dynamic reconstruction method based on Gaussian Splatting, and a refinement stage with diffusion prior for semantic restoration. The qualitative results and user preference study demonstrate that our framework outperforms the baselines in generation quality by a considerable margin. Code will be released at https://github.com/jasongzy/EG4D.
OmniMotionGPT: Animal Motion Generation with Limited Data
Our paper aims to generate diverse and realistic animal motion sequences from textual descriptions, without a large-scale animal text-motion dataset. While the task of text-driven human motion synthesis is already extensively studied and benchmarked, it remains challenging to transfer this success to other skeleton structures with limited data. In this work, we design a model architecture that imitates Generative Pretraining Transformer (GPT), utilizing prior knowledge learned from human data to the animal domain. We jointly train motion autoencoders for both animal and human motions and at the same time optimize through the similarity scores among human motion encoding, animal motion encoding, and text CLIP embedding. Presenting the first solution to this problem, we are able to generate animal motions with high diversity and fidelity, quantitatively and qualitatively outperforming the results of training human motion generation baselines on animal data. Additionally, we introduce AnimalML3D, the first text-animal motion dataset with 1240 animation sequences spanning 36 different animal identities. We hope this dataset would mediate the data scarcity problem in text-driven animal motion generation, providing a new playground for the research community.
4D-fy: Text-to-4D Generation Using Hybrid Score Distillation Sampling
Recent breakthroughs in text-to-4D generation rely on pre-trained text-to-image and text-to-video models to generate dynamic 3D scenes. However, current text-to-4D methods face a three-way tradeoff between the quality of scene appearance, 3D structure, and motion. For example, text-to-image models and their 3D-aware variants are trained on internet-scale image datasets and can be used to produce scenes with realistic appearance and 3D structure -- but no motion. Text-to-video models are trained on relatively smaller video datasets and can produce scenes with motion, but poorer appearance and 3D structure. While these models have complementary strengths, they also have opposing weaknesses, making it difficult to combine them in a way that alleviates this three-way tradeoff. Here, we introduce hybrid score distillation sampling, an alternating optimization procedure that blends supervision signals from multiple pre-trained diffusion models and incorporates benefits of each for high-fidelity text-to-4D generation. Using hybrid SDS, we demonstrate synthesis of 4D scenes with compelling appearance, 3D structure, and motion.
Taming Diffusion Models for Music-driven Conducting Motion Generation
Generating the motion of orchestral conductors from a given piece of symphony music is a challenging task since it requires a model to learn semantic music features and capture the underlying distribution of real conducting motion. Prior works have applied Generative Adversarial Networks (GAN) to this task, but the promising diffusion model, which recently showed its advantages in terms of both training stability and output quality, has not been exploited in this context. This paper presents Diffusion-Conductor, a novel DDIM-based approach for music-driven conducting motion generation, which integrates the diffusion model to a two-stage learning framework. We further propose a random masking strategy to improve the feature robustness, and use a pair of geometric loss functions to impose additional regularizations and increase motion diversity. We also design several novel metrics, including Frechet Gesture Distance (FGD) and Beat Consistency Score (BC) for a more comprehensive evaluation of the generated motion. Experimental results demonstrate the advantages of our model.
ReMoMask: Retrieval-Augmented Masked Motion Generation
Text-to-Motion (T2M) generation aims to synthesize realistic and semantically aligned human motion sequences from natural language descriptions. However, current approaches face dual challenges: Generative models (e.g., diffusion models) suffer from limited diversity, error accumulation, and physical implausibility, while Retrieval-Augmented Generation (RAG) methods exhibit diffusion inertia, partial-mode collapse, and asynchronous artifacts. To address these limitations, we propose ReMoMask, a unified framework integrating three key innovations: 1) A Bidirectional Momentum Text-Motion Model decouples negative sample scale from batch size via momentum queues, substantially improving cross-modal retrieval precision; 2) A Semantic Spatio-temporal Attention mechanism enforces biomechanical constraints during part-level fusion to eliminate asynchronous artifacts; 3) RAG-Classier-Free Guidance incorporates minor unconditional generation to enhance generalization. Built upon MoMask's RVQ-VAE, ReMoMask efficiently generates temporally coherent motions in minimal steps. Extensive experiments on standard benchmarks demonstrate the state-of-the-art performance of ReMoMask, achieving a 3.88% and 10.97% improvement in FID scores on HumanML3D and KIT-ML, respectively, compared to the previous SOTA method RAG-T2M. Code: https://github.com/AIGeeksGroup/ReMoMask. Website: https://aigeeksgroup.github.io/ReMoMask.
MoGIC: Boosting Motion Generation via Intention Understanding and Visual Context
Existing text-driven motion generation methods often treat synthesis as a bidirectional mapping between language and motion, but remain limited in capturing the causal logic of action execution and the human intentions that drive behavior. The absence of visual grounding further restricts precision and personalization, as language alone cannot specify fine-grained spatiotemporal details. We propose MoGIC, a unified framework that integrates intention modeling and visual priors into multimodal motion synthesis. By jointly optimizing multimodal-conditioned motion generation and intention prediction, MoGIC uncovers latent human goals, leverages visual priors to enhance generation, and exhibits versatile multimodal generative capability. We further introduce a mixture-of-attention mechanism with adaptive scope to enable effective local alignment between conditional tokens and motion subsequences. To support this paradigm, we curate Mo440H, a 440-hour benchmark from 21 high-quality motion datasets. Experiments show that after finetuning, MoGIC reduces FID by 38.6\% on HumanML3D and 34.6\% on Mo440H, surpasses LLM-based methods in motion captioning with a lightweight text head, and further enables intention prediction and vision-conditioned generation, advancing controllable motion synthesis and intention understanding. The code is available at https://github.com/JunyuShi02/MoGIC
Text-driven Human Motion Generation with Motion Masked Diffusion Model
Text-driven human motion generation is a multimodal task that synthesizes human motion sequences conditioned on natural language. It requires the model to satisfy textual descriptions under varying conditional inputs, while generating plausible and realistic human actions with high diversity. Existing diffusion model-based approaches have outstanding performance in the diversity and multimodality of generation. However, compared to autoregressive methods that train motion encoders before inference, diffusion methods lack in fitting the distribution of human motion features which leads to an unsatisfactory FID score. One insight is that the diffusion model lack the ability to learn the motion relations among spatio-temporal semantics through contextual reasoning. To solve this issue, in this paper, we proposed Motion Masked Diffusion Model (MMDM), a novel human motion masked mechanism for diffusion model to explicitly enhance its ability to learn the spatio-temporal relationships from contextual joints among motion sequences. Besides, considering the complexity of human motion data with dynamic temporal characteristics and spatial structure, we designed two mask modeling strategies: time frames mask and body parts mask. During training, MMDM masks certain tokens in the motion embedding space. Then, the diffusion decoder is designed to learn the whole motion sequence from masked embedding in each sampling step, this allows the model to recover a complete sequence from incomplete representations. Experiments on HumanML3D and KIT-ML dataset demonstrate that our mask strategy is effective by balancing motion quality and text-motion consistency.
MMM: Generative Masked Motion Model
Recent advances in text-to-motion generation using diffusion and autoregressive models have shown promising results. However, these models often suffer from a trade-off between real-time performance, high fidelity, and motion editability. To address this gap, we introduce MMM, a novel yet simple motion generation paradigm based on Masked Motion Model. MMM consists of two key components: (1) a motion tokenizer that transforms 3D human motion into a sequence of discrete tokens in latent space, and (2) a conditional masked motion transformer that learns to predict randomly masked motion tokens, conditioned on the pre-computed text tokens. By attending to motion and text tokens in all directions, MMM explicitly captures inherent dependency among motion tokens and semantic mapping between motion and text tokens. During inference, this allows parallel and iterative decoding of multiple motion tokens that are highly consistent with fine-grained text descriptions, therefore simultaneously achieving high-fidelity and high-speed motion generation. In addition, MMM has innate motion editability. By simply placing mask tokens in the place that needs editing, MMM automatically fills the gaps while guaranteeing smooth transitions between editing and non-editing parts. Extensive experiments on the HumanML3D and KIT-ML datasets demonstrate that MMM surpasses current leading methods in generating high-quality motion (evidenced by superior FID scores of 0.08 and 0.429), while offering advanced editing features such as body-part modification, motion in-betweening, and the synthesis of long motion sequences. In addition, MMM is two orders of magnitude faster on a single mid-range GPU than editable motion diffusion models. Our project page is available at https://exitudio.github.io/MMM-page.
Mogo: RQ Hierarchical Causal Transformer for High-Quality 3D Human Motion Generation
In the field of text-to-motion generation, Bert-type Masked Models (MoMask, MMM) currently produce higher-quality outputs compared to GPT-type autoregressive models (T2M-GPT). However, these Bert-type models often lack the streaming output capability required for applications in video game and multimedia environments, a feature inherent to GPT-type models. Additionally, they demonstrate weaker performance in out-of-distribution generation. To surpass the quality of BERT-type models while leveraging a GPT-type structure, without adding extra refinement models that complicate scaling data, we propose a novel architecture, Mogo (Motion Only Generate Once), which generates high-quality lifelike 3D human motions by training a single transformer model. Mogo consists of only two main components: 1) RVQ-VAE, a hierarchical residual vector quantization variational autoencoder, which discretizes continuous motion sequences with high precision; 2) Hierarchical Causal Transformer, responsible for generating the base motion sequences in an autoregressive manner while simultaneously inferring residuals across different layers. Experimental results demonstrate that Mogo can generate continuous and cyclic motion sequences up to 260 frames (13 seconds), surpassing the 196 frames (10 seconds) length limitation of existing datasets like HumanML3D. On the HumanML3D test set, Mogo achieves a FID score of 0.079, outperforming both the GPT-type model T2M-GPT (FID = 0.116), AttT2M (FID = 0.112) and the BERT-type model MMM (FID = 0.080). Furthermore, our model achieves the best quantitative performance in out-of-distribution generation.
Multi-Object Sketch Animation by Scene Decomposition and Motion Planning
Sketch animation, which brings static sketches to life by generating dynamic video sequences, has found widespread applications in GIF design, cartoon production, and daily entertainment. While current methods for sketch animation perform well in single-object sketch animation, they struggle in multi-object scenarios. By analyzing their failures, we identify two major challenges of transitioning from single-object to multi-object sketch animation: object-aware motion modeling and complex motion optimization. For multi-object sketch animation, we propose MoSketch based on iterative optimization through Score Distillation Sampling (SDS) and thus animating a multi-object sketch in a training-data free manner. To tackle the two challenges in a divide-and-conquer strategy, MoSketch has four novel modules, i.e., LLM-based scene decomposition, LLM-based motion planning, multi-grained motion refinement, and compositional SDS. Extensive qualitative and quantitative experiments demonstrate the superiority of our method over existing sketch animation approaches. MoSketch takes a pioneering step towards multi-object sketch animation, opening new avenues for future research and applications.
What's in the Flow? Exploiting Temporal Motion Cues for Unsupervised Generic Event Boundary Detection
Generic Event Boundary Detection (GEBD) task aims to recognize generic, taxonomy-free boundaries that segment a video into meaningful events. Current methods typically involve a neural model trained on a large volume of data, demanding substantial computational power and storage space. We explore two pivotal questions pertaining to GEBD: Can non-parametric algorithms outperform unsupervised neural methods? Does motion information alone suffice for high performance? This inquiry drives us to algorithmically harness motion cues for identifying generic event boundaries in videos. In this work, we propose FlowGEBD, a non-parametric, unsupervised technique for GEBD. Our approach entails two algorithms utilizing optical flow: (i) Pixel Tracking and (ii) Flow Normalization. By conducting thorough experimentation on the challenging Kinetics-GEBD and TAPOS datasets, our results establish FlowGEBD as the new state-of-the-art (SOTA) among unsupervised methods. FlowGEBD exceeds the neural models on the Kinetics-GEBD dataset by obtaining an [email protected] score of 0.713 with an absolute gain of 31.7% compared to the unsupervised baseline and achieves an average F1 score of 0.623 on the TAPOS validation dataset.
SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion
Multi-objective optimization problems are ubiquitous in robotics, e.g., the optimization of a robot manipulation task requires a joint consideration of grasp pose configurations, collisions and joint limits. While some demands can be easily hand-designed, e.g., the smoothness of a trajectory, several task-specific objectives need to be learned from data. This work introduces a method for learning data-driven SE(3) cost functions as diffusion models. Diffusion models can represent highly-expressive multimodal distributions and exhibit proper gradients over the entire space due to their score-matching training objective. Learning costs as diffusion models allows their seamless integration with other costs into a single differentiable objective function, enabling joint gradient-based motion optimization. In this work, we focus on learning SE(3) diffusion models for 6DoF grasping, giving rise to a novel framework for joint grasp and motion optimization without needing to decouple grasp selection from trajectory generation. We evaluate the representation power of our SE(3) diffusion models w.r.t. classical generative models, and we showcase the superior performance of our proposed optimization framework in a series of simulated and real-world robotic manipulation tasks against representative baselines.
TimesNet-Gen: Deep Learning-based Site Specific Strong Motion Generation
Effective earthquake risk reduction relies on accurate site-specific evaluations. This requires models that can represent the influence of local site conditions on ground motion characteristics. In this context, data driven approaches that learn site controlled signatures from recorded ground motions offer a promising direction. We address strong ground motion generation from time-domain accelerometer records and introduce the TimesNet-Gen, a time-domain conditional generator. The approach uses a station specific latent bottleneck. We evaluate generation by comparing HVSR curves and fundamental site-frequency f_0 distributions between real and generated records per station, and summarize station specificity with a score based on the f_0 distribution confusion matrices. TimesNet-Gen achieves strong station-wise alignment and compares favorably with a spectrogram-based conditional VAE baseline for site-specific strong motion synthesis. Our codes are available via https://github.com/brsylmz23/TimesNet-Gen.
Articulate That Object Part (ATOP): 3D Part Articulation via Text and Motion Personalization
We present ATOP (Articulate That Object Part), a novel few-shot method based on motion personalization to articulate a static 3D object with respect to a part and its motion as prescribed in a text prompt. Given the scarcity of available datasets with motion attribute annotations, existing methods struggle to generalize well in this task. In our work, the text input allows us to tap into the power of modern-day diffusion models to generate plausible motion samples for the right object category and part. In turn, the input 3D object provides image prompting to personalize the generated video to that very object we wish to articulate. Our method starts with a few-shot finetuning for category-specific motion generation, a key first step to compensate for the lack of articulation awareness by current diffusion models. For this, we finetune a pre-trained multi-view image generation model for controllable multi-view video generation, using a small collection of video samples obtained for the target object category. This is followed by motion video personalization that is realized by multi-view rendered images of the target 3D object. At last, we transfer the personalized video motion to the target 3D object via differentiable rendering to optimize part motion parameters by a score distillation sampling loss. Experimental results on PartNet-Sapien and ACD datasets show that our method is capable of generating realistic motion videos and predicting 3D motion parameters in a more accurate and generalizable way, compared to prior works in the few-shot setting.
DeCo: Decoupled Human-Centered Diffusion Video Editing with Motion Consistency
Diffusion models usher a new era of video editing, flexibly manipulating the video contents with text prompts. Despite the widespread application demand in editing human-centered videos, these models face significant challenges in handling complex objects like humans. In this paper, we introduce DeCo, a novel video editing framework specifically designed to treat humans and the background as separate editable targets, ensuring global spatial-temporal consistency by maintaining the coherence of each individual component. Specifically, we propose a decoupled dynamic human representation that utilizes a parametric human body prior to generate tailored humans while preserving the consistent motions as the original video. In addition, we consider the background as a layered atlas to apply text-guided image editing approaches on it. To further enhance the geometry and texture of humans during the optimization, we extend the calculation of score distillation sampling into normal space and image space. Moreover, we tackle inconsistent lighting between the edited targets by leveraging a lighting-aware video harmonizer, a problem previously overlooked in decompose-edit-combine approaches. Extensive qualitative and numerical experiments demonstrate that DeCo outperforms prior video editing methods in human-centered videos, especially in longer videos.
BiPO: Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis
Generating natural and expressive human motions from textual descriptions is challenging due to the complexity of coordinating full-body dynamics and capturing nuanced motion patterns over extended sequences that accurately reflect the given text. To address this, we introduce BiPO, Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis, a novel model that enhances text-to-motion synthesis by integrating part-based generation with a bidirectional autoregressive architecture. This integration allows BiPO to consider both past and future contexts during generation while enhancing detailed control over individual body parts without requiring ground-truth motion length. To relax the interdependency among body parts caused by the integration, we devise the Partial Occlusion technique, which probabilistically occludes the certain motion part information during training. In our comprehensive experiments, BiPO achieves state-of-the-art performance on the HumanML3D dataset, outperforming recent methods such as ParCo, MoMask, and BAMM in terms of FID scores and overall motion quality. Notably, BiPO excels not only in the text-to-motion generation task but also in motion editing tasks that synthesize motion based on partially generated motion sequences and textual descriptions. These results reveal the BiPO's effectiveness in advancing text-to-motion synthesis and its potential for practical applications.
CASIM: Composite Aware Semantic Injection for Text to Motion Generation
Recent advances in generative modeling and tokenization have driven significant progress in text-to-motion generation, leading to enhanced quality and realism in generated motions. However, effectively leveraging textual information for conditional motion generation remains an open challenge. We observe that current approaches, primarily relying on fixed-length text embeddings (e.g., CLIP) for global semantic injection, struggle to capture the composite nature of human motion, resulting in suboptimal motion quality and controllability. To address this limitation, we propose the Composite Aware Semantic Injection Mechanism (CASIM), comprising a composite-aware semantic encoder and a text-motion aligner that learns the dynamic correspondence between text and motion tokens. Notably, CASIM is model and representation-agnostic, readily integrating with both autoregressive and diffusion-based methods. Experiments on HumanML3D and KIT benchmarks demonstrate that CASIM consistently improves motion quality, text-motion alignment, and retrieval scores across state-of-the-art methods. Qualitative analyses further highlight the superiority of our composite-aware approach over fixed-length semantic injection, enabling precise motion control from text prompts and stronger generalization to unseen text inputs.
AniClipart: Clipart Animation with Text-to-Video Priors
Clipart, a pre-made graphic art form, offers a convenient and efficient way of illustrating visual content. Traditional workflows to convert static clipart images into motion sequences are laborious and time-consuming, involving numerous intricate steps like rigging, key animation and in-betweening. Recent advancements in text-to-video generation hold great potential in resolving this problem. Nevertheless, direct application of text-to-video generation models often struggles to retain the visual identity of clipart images or generate cartoon-style motions, resulting in unsatisfactory animation outcomes. In this paper, we introduce AniClipart, a system that transforms static clipart images into high-quality motion sequences guided by text-to-video priors. To generate cartoon-style and smooth motion, we first define B\'{e}zier curves over keypoints of the clipart image as a form of motion regularization. We then align the motion trajectories of the keypoints with the provided text prompt by optimizing the Video Score Distillation Sampling (VSDS) loss, which encodes adequate knowledge of natural motion within a pretrained text-to-video diffusion model. With a differentiable As-Rigid-As-Possible shape deformation algorithm, our method can be end-to-end optimized while maintaining deformation rigidity. Experimental results show that the proposed AniClipart consistently outperforms existing image-to-video generation models, in terms of text-video alignment, visual identity preservation, and motion consistency. Furthermore, we showcase the versatility of AniClipart by adapting it to generate a broader array of animation formats, such as layered animation, which allows topological changes.
Deep learning probability flows and entropy production rates in active matter
Active matter systems, from self-propelled colloids to motile bacteria, are characterized by the conversion of free energy into useful work at the microscopic scale. These systems generically involve physics beyond the reach of equilibrium statistical mechanics, and a persistent challenge has been to understand the nature of their nonequilibrium states. The entropy production rate and the magnitude of the steady-state probability current provide quantitative ways to do so by measuring the breakdown of time-reversal symmetry and the strength of nonequilibrium transport of measure. Yet, their efficient computation has remained elusive, as they depend on the system's unknown and high-dimensional probability density. Here, building upon recent advances in generative modeling, we develop a deep learning framework that estimates the score of this density. We show that the score, together with the microscopic equations of motion, gives direct access to the entropy production rate, the probability current, and their decomposition into local contributions from individual particles, spatial regions, and degrees of freedom. To represent the score, we introduce a novel, spatially-local transformer-based network architecture that learns high-order interactions between particles while respecting their underlying permutation symmetry. We demonstrate the broad utility and scalability of the method by applying it to several high-dimensional systems of interacting active particles undergoing motility-induced phase separation (MIPS). We show that a single instance of our network trained on a system of 4096 particles at one packing fraction can generalize to other regions of the phase diagram, including systems with as many as 32768 particles. We use this observation to quantify the spatial structure of the departure from equilibrium in MIPS as a function of the number of particles and the packing fraction.
Bringing Objects to Life: 4D generation from 3D objects
Recent advancements in generative modeling now enable the creation of 4D content (moving 3D objects) controlled with text prompts. 4D generation has large potential in applications like virtual worlds, media, and gaming, but existing methods provide limited control over the appearance and geometry of generated content. In this work, we introduce a method for animating user-provided 3D objects by conditioning on textual prompts to guide 4D generation, enabling custom animations while maintaining the identity of the original object. We first convert a 3D mesh into a ``static" 4D Neural Radiance Field (NeRF) that preserves the visual attributes of the input object. Then, we animate the object using an Image-to-Video diffusion model driven by text. To improve motion realism, we introduce an incremental viewpoint selection protocol for sampling perspectives to promote lifelike movement and a masked Score Distillation Sampling (SDS) loss, which leverages attention maps to focus optimization on relevant regions. We evaluate our model in terms of temporal coherence, prompt adherence, and visual fidelity and find that our method outperforms baselines that are based on other approaches, achieving up to threefold improvements in identity preservation measured using LPIPS scores, and effectively balancing visual quality with dynamic content.
Making Reconstruction-based Method Great Again for Video Anomaly Detection
Anomaly detection in videos is a significant yet challenging problem. Previous approaches based on deep neural networks employ either reconstruction-based or prediction-based approaches. Nevertheless, existing reconstruction-based methods 1) rely on old-fashioned convolutional autoencoders and are poor at modeling temporal dependency; 2) are prone to overfit the training samples, leading to indistinguishable reconstruction errors of normal and abnormal frames during the inference phase. To address such issues, firstly, we get inspiration from transformer and propose {textbf S}patio-{textbf T}emporal {textbf A}uto-{textbf T}rans-{textbf E}ncoder, dubbed as STATE, as a new autoencoder model for enhanced consecutive frame reconstruction. Our STATE is equipped with a specifically designed learnable convolutional attention module for efficient temporal learning and reasoning. Secondly, we put forward a novel reconstruction-based input perturbation technique during testing to further differentiate anomalous frames. With the same perturbation magnitude, the testing reconstruction error of the normal frames lowers more than that of the abnormal frames, which contributes to mitigating the overfitting problem of reconstruction. Owing to the high relevance of the frame abnormality and the objects in the frame, we conduct object-level reconstruction using both the raw frame and the corresponding optical flow patches. Finally, the anomaly score is designed based on the combination of the raw and motion reconstruction errors using perturbed inputs. Extensive experiments on benchmark video anomaly detection datasets demonstrate that our approach outperforms previous reconstruction-based methods by a notable margin, and achieves state-of-the-art anomaly detection performance consistently. The code is available at https://github.com/wyzjack/MRMGA4VAD.
CARE-PD: A Multi-Site Anonymized Clinical Dataset for Parkinson's Disease Gait Assessment
Objective gait assessment in Parkinson's Disease (PD) is limited by the absence of large, diverse, and clinically annotated motion datasets. We introduce CARE-PD, the largest publicly available archive of 3D mesh gait data for PD, and the first multi-site collection spanning 9 cohorts from 8 clinical centers. All recordings (RGB video or motion capture) are converted into anonymized SMPL meshes via a harmonized preprocessing pipeline. CARE-PD supports two key benchmarks: supervised clinical score prediction (estimating Unified Parkinson's Disease Rating Scale, UPDRS, gait scores) and unsupervised motion pretext tasks (2D-to-3D keypoint lifting and full-body 3D reconstruction). Clinical prediction is evaluated under four generalization protocols: within-dataset, cross-dataset, leave-one-dataset-out, and multi-dataset in-domain adaptation. To assess clinical relevance, we compare state-of-the-art motion encoders with a traditional gait-feature baseline, finding that encoders consistently outperform handcrafted features. Pretraining on CARE-PD reduces MPJPE (from 60.8mm to 7.5mm) and boosts PD severity macro-F1 by 17 percentage points, underscoring the value of clinically curated, diverse training data. CARE-PD and all benchmark code are released for non-commercial research at https://neurips2025.care-pd.ca/.
Can Generative Video Models Help Pose Estimation?
Pairwise pose estimation from images with little or no overlap is an open challenge in computer vision. Existing methods, even those trained on large-scale datasets, struggle in these scenarios due to the lack of identifiable correspondences or visual overlap. Inspired by the human ability to infer spatial relationships from diverse scenes, we propose a novel approach, InterPose, that leverages the rich priors encoded within pre-trained generative video models. We propose to use a video model to hallucinate intermediate frames between two input images, effectively creating a dense, visual transition, which significantly simplifies the problem of pose estimation. Since current video models can still produce implausible motion or inconsistent geometry, we introduce a self-consistency score that evaluates the consistency of pose predictions from sampled videos. We demonstrate that our approach generalizes among three state-of-the-art video models and show consistent improvements over the state-of-the-art DUSt3R on four diverse datasets encompassing indoor, outdoor, and object-centric scenes. Our findings suggest a promising avenue for improving pose estimation models by leveraging large generative models trained on vast amounts of video data, which is more readily available than 3D data. See our project page for results: https://inter-pose.github.io/.
TM2D: Bimodality Driven 3D Dance Generation via Music-Text Integration
We propose a novel task for generating 3D dance movements that simultaneously incorporate both text and music modalities. Unlike existing works that generate dance movements using a single modality such as music, our goal is to produce richer dance movements guided by the instructive information provided by the text. However, the lack of paired motion data with both music and text modalities limits the ability to generate dance movements that integrate both. To alleviate this challenge, we propose to utilize a 3D human motion VQ-VAE to project the motions of the two datasets into a latent space consisting of quantized vectors, which effectively mix the motion tokens from the two datasets with different distributions for training. Additionally, we propose a cross-modal transformer to integrate text instructions into motion generation architecture for generating 3D dance movements without degrading the performance of music-conditioned dance generation. To better evaluate the quality of the generated motion, we introduce two novel metrics, namely Motion Prediction Distance (MPD) and Freezing Score, to measure the coherence and freezing percentage of the generated motion. Extensive experiments show that our approach can generate realistic and coherent dance movements conditioned on both text and music while maintaining comparable performance with the two single modalities. Code will be available at: https://garfield-kh.github.io/TM2D/.
DreamScene4D: Dynamic Multi-Object Scene Generation from Monocular Videos
View-predictive generative models provide strong priors for lifting object-centric images and videos into 3D and 4D through rendering and score distillation objectives. A question then remains: what about lifting complete multi-object dynamic scenes? There are two challenges in this direction: First, rendering error gradients are often insufficient to recover fast object motion, and second, view predictive generative models work much better for objects than whole scenes, so, score distillation objectives cannot currently be applied at the scene level directly. We present DreamScene4D, the first approach to generate 3D dynamic scenes of multiple objects from monocular videos via 360-degree novel view synthesis. Our key insight is a "decompose-recompose" approach that factorizes the video scene into the background and object tracks, while also factorizing object motion into 3 components: object-centric deformation, object-to-world-frame transformation, and camera motion. Such decomposition permits rendering error gradients and object view-predictive models to recover object 3D completions and deformations while bounding box tracks guide the large object movements in the scene. We show extensive results on challenging DAVIS, Kubric, and self-captured videos with quantitative comparisons and a user preference study. Besides 4D scene generation, DreamScene4D obtains accurate 2D persistent point track by projecting the inferred 3D trajectories to 2D. We will release our code and hope our work will stimulate more research on fine-grained 4D understanding from videos.
4Diffusion: Multi-view Video Diffusion Model for 4D Generation
Current 4D generation methods have achieved noteworthy efficacy with the aid of advanced diffusion generative models. However, these methods lack multi-view spatial-temporal modeling and encounter challenges in integrating diverse prior knowledge from multiple diffusion models, resulting in inconsistent temporal appearance and flickers. In this paper, we propose a novel 4D generation pipeline, namely 4Diffusion aimed at generating spatial-temporally consistent 4D content from a monocular video. We first design a unified diffusion model tailored for multi-view video generation by incorporating a learnable motion module into a frozen 3D-aware diffusion model to capture multi-view spatial-temporal correlations. After training on a curated dataset, our diffusion model acquires reasonable temporal consistency and inherently preserves the generalizability and spatial consistency of the 3D-aware diffusion model. Subsequently, we propose 4D-aware Score Distillation Sampling loss, which is based on our multi-view video diffusion model, to optimize 4D representation parameterized by dynamic NeRF. This aims to eliminate discrepancies arising from multiple diffusion models, allowing for generating spatial-temporally consistent 4D content. Moreover, we devise an anchor loss to enhance the appearance details and facilitate the learning of dynamic NeRF. Extensive qualitative and quantitative experiments demonstrate that our method achieves superior performance compared to previous methods.
Comp4D: LLM-Guided Compositional 4D Scene Generation
Recent advancements in diffusion models for 2D and 3D content creation have sparked a surge of interest in generating 4D content. However, the scarcity of 3D scene datasets constrains current methodologies to primarily object-centric generation. To overcome this limitation, we present Comp4D, a novel framework for Compositional 4D Generation. Unlike conventional methods that generate a singular 4D representation of the entire scene, Comp4D innovatively constructs each 4D object within the scene separately. Utilizing Large Language Models (LLMs), the framework begins by decomposing an input text prompt into distinct entities and maps out their trajectories. It then constructs the compositional 4D scene by accurately positioning these objects along their designated paths. To refine the scene, our method employs a compositional score distillation technique guided by the pre-defined trajectories, utilizing pre-trained diffusion models across text-to-image, text-to-video, and text-to-3D domains. Extensive experiments demonstrate our outstanding 4D content creation capability compared to prior arts, showcasing superior visual quality, motion fidelity, and enhanced object interactions.
STRIDE-QA: Visual Question Answering Dataset for Spatiotemporal Reasoning in Urban Driving Scenes
Vision-Language Models (VLMs) have been applied to autonomous driving to support decision-making in complex real-world scenarios. However, their training on static, web-sourced image-text pairs fundamentally limits the precise spatiotemporal reasoning required to understand and predict dynamic traffic scenes. We address this critical gap with STRIDE-QA, a large-scale visual question answering (VQA) dataset for physically grounded reasoning from an ego-centric perspective. Constructed from 100 hours of multi-sensor driving data in Tokyo, capturing diverse and challenging conditions, STRIDE-QA is the largest VQA dataset for spatiotemporal reasoning in urban driving, offering 16 million QA pairs over 285K frames. Grounded by dense, automatically generated annotations including 3D bounding boxes, segmentation masks, and multi-object tracks, the dataset uniquely supports both object-centric and ego-centric reasoning through three novel QA tasks that require spatial localization and temporal prediction. Our benchmarks demonstrate that existing VLMs struggle significantly, achieving near-zero scores on prediction consistency. In contrast, VLMs fine-tuned on STRIDE-QA exhibit dramatic performance gains, achieving 55% success in spatial localization and 28% consistency in future motion prediction, compared to near-zero scores from general-purpose VLMs. Therefore, STRIDE-QA establishes a comprehensive foundation for developing more reliable VLMs for safety-critical autonomous systems.
Semantically-enhanced Deep Collision Prediction for Autonomous Navigation using Aerial Robots
This paper contributes a novel and modularized learning-based method for aerial robots navigating cluttered environments containing hard-to-perceive thin obstacles without assuming access to a map or the full pose estimation of the robot. The proposed solution builds upon a semantically-enhanced Variational Autoencoder that is trained with both real-world and simulated depth images to compress the input data, while preserving semantically-labeled thin obstacles and handling invalid pixels in the depth sensor's output. This compressed representation, in addition to the robot's partial state involving its linear/angular velocities and its attitude are then utilized to train an uncertainty-aware 3D Collision Prediction Network in simulation to predict collision scores for candidate action sequences in a predefined motion primitives library. A set of simulation and experimental studies in cluttered environments with various sizes and types of obstacles, including multiple hard-to-perceive thin objects, were conducted to evaluate the performance of the proposed method and compare against an end-to-end trained baseline. The results demonstrate the benefits of the proposed semantically-enhanced deep collision prediction for learning-based autonomous navigation.
MRSAudio: A Large-Scale Multimodal Recorded Spatial Audio Dataset with Refined Annotations
Humans rely on multisensory integration to perceive spatial environments, where auditory cues enable sound source localization in three-dimensional space. Despite the critical role of spatial audio in immersive technologies such as VR/AR, most existing multimodal datasets provide only monaural audio, which limits the development of spatial audio generation and understanding. To address these challenges, we introduce MRSAudio, a large-scale multimodal spatial audio dataset designed to advance research in spatial audio understanding and generation. MRSAudio spans four distinct components: MRSLife, MRSSpeech, MRSMusic, and MRSSing, covering diverse real-world scenarios. The dataset includes synchronized binaural and ambisonic audio, exocentric and egocentric video, motion trajectories, and fine-grained annotations such as transcripts, phoneme boundaries, lyrics, scores, and prompts. To demonstrate the utility and versatility of MRSAudio, we establish five foundational tasks: audio spatialization, and spatial text to speech, spatial singing voice synthesis, spatial music generation and sound event localization and detection. Results show that MRSAudio enables high-quality spatial modeling and supports a broad range of spatial audio research. Demos and dataset access are available at https://mrsaudio.github.io.
VideoGLUE: Video General Understanding Evaluation of Foundation Models
We evaluate existing foundation models video understanding capabilities using a carefully designed experiment protocol consisting of three hallmark tasks (action recognition, temporal localization, and spatiotemporal localization), eight datasets well received by the community, and four adaptation methods tailoring a foundation model (FM) for a downstream task. Moreover, we propose a scalar VideoGLUE score (VGS) to measure an FMs efficacy and efficiency when adapting to general video understanding tasks. Our main findings are as follows. First, task-specialized models significantly outperform the six FMs studied in this work, in sharp contrast to what FMs have achieved in natural language and image understanding. Second,video-native FMs, whose pretraining data contains the video modality, are generally better than image-native FMs in classifying motion-rich videos, localizing actions in time, and understanding a video of more than one action. Third, the video-native FMs can perform well on video tasks under light adaptations to downstream tasks(e.g., freezing the FM backbones), while image-native FMs win in full end-to-end finetuning. The first two observations reveal the need and tremendous opportunities to conduct research on video-focused FMs, and the last confirms that both tasks and adaptation methods matter when it comes to the evaluation of FMs.
FineDance: A Fine-grained Choreography Dataset for 3D Full Body Dance Generation
Generating full-body and multi-genre dance sequences from given music is a challenging task, due to the limitations of existing datasets and the inherent complexity of the fine-grained hand motion and dance genres. To address these problems, we propose FineDance, which contains 14.6 hours of music-dance paired data, with fine-grained hand motions, fine-grained genres (22 dance genres), and accurate posture. To the best of our knowledge, FineDance is the largest music-dance paired dataset with the most dance genres. Additionally, to address monotonous and unnatural hand movements existing in previous methods, we propose a full-body dance generation network, which utilizes the diverse generation capabilities of the diffusion model to solve monotonous problems, and use expert nets to solve unreal problems. To further enhance the genre-matching and long-term stability of generated dances, we propose a Genre&Coherent aware Retrieval Module. Besides, we propose a novel metric named Genre Matching Score to evaluate the genre-matching degree between dance and music. Quantitative and qualitative experiments demonstrate the quality of FineDance, and the state-of-the-art performance of FineNet. The FineDance Dataset and more qualitative samples can be found at our website.
Learning Long-Range Action Representation by Two-Stream Mamba Pyramid Network for Figure Skating Assessment
Technical Element Score (TES) and Program Component Score (PCS) evaluations in figure skating demand precise assessment of athletic actions and artistic interpretation, respectively. Existing methods face three major challenges. Firstly, video and audio cues are regarded as common features for both TES and PCS predictions in previous works without considering the prior evaluation criterion of figure skating. Secondly, action elements in competitions are separated in time, TES should be derived from each element's score, but existing methods try to give an overall TES prediction without evaluating each action element. Thirdly, lengthy competition videos make it difficult and inefficient to handle long-range contexts. To address these challenges, we propose a two-stream Mamba pyramid network that aligns with actual judging criteria to predict TES and PCS by separating visual-feature based TES evaluation stream from audio-visual-feature based PCS evaluation stream. In the PCS evaluation stream, we introduce a multi-level fusion mechanism to guarantee that video-based features remain unaffected when assessing TES, and enhance PCS estimation by fusing visual and auditory cues across each contextual level of the pyramid. In the TES evaluation stream, the multi-scale Mamba pyramid and TES head we proposed effectively address the challenges of localizing and evaluating action elements with various temporal scales and give score predictions. With Mamba's superior ability to capture long-range dependencies and its linear computational complexity, our method is ideal for handling lengthy figure skating videos. Comprehensive experimentation demonstrates that our framework attains state-of-the-art performance on the FineFS benchmark. Our source code is available at https://github.com/ycwfs/Figure-Skating-Action-Quality-Assessment.
MotionBank: A Large-scale Video Motion Benchmark with Disentangled Rule-based Annotations
In this paper, we tackle the problem of how to build and benchmark a large motion model (LMM). The ultimate goal of LMM is to serve as a foundation model for versatile motion-related tasks, e.g., human motion generation, with interpretability and generalizability. Though advanced, recent LMM-related works are still limited by small-scale motion data and costly text descriptions. Besides, previous motion benchmarks primarily focus on pure body movements, neglecting the ubiquitous motions in context, i.e., humans interacting with humans, objects, and scenes. To address these limitations, we consolidate large-scale video action datasets as knowledge banks to build MotionBank, which comprises 13 video action datasets, 1.24M motion sequences, and 132.9M frames of natural and diverse human motions. Different from laboratory-captured motions, in-the-wild human-centric videos contain abundant motions in context. To facilitate better motion text alignment, we also meticulously devise a motion caption generation algorithm to automatically produce rule-based, unbiased, and disentangled text descriptions via the kinematic characteristics for each motion. Extensive experiments show that our MotionBank is beneficial for general motion-related tasks of human motion generation, motion in-context generation, and motion understanding. Video motions together with the rule-based text annotations could serve as an efficient alternative for larger LMMs. Our dataset, codes, and benchmark will be publicly available at https://github.com/liangxuy/MotionBank.
LaMP: Language-Motion Pretraining for Motion Generation, Retrieval, and Captioning
Language plays a vital role in the realm of human motion. Existing methods have largely depended on CLIP text embeddings for motion generation, yet they fall short in effectively aligning language and motion due to CLIP's pretraining on static image-text pairs. This work introduces LaMP, a novel Language-Motion Pretraining model, which transitions from a language-vision to a more suitable language-motion latent space. It addresses key limitations by generating motion-informative text embeddings, significantly enhancing the relevance and semantics of generated motion sequences. With LaMP, we advance three key tasks: text-to-motion generation, motion-text retrieval, and motion captioning through aligned language-motion representation learning. For generation, we utilize LaMP to provide the text condition instead of CLIP, and an autoregressive masked prediction is designed to achieve mask modeling without rank collapse in transformers. For retrieval, motion features from LaMP's motion transformer interact with query tokens to retrieve text features from the text transformer, and vice versa. For captioning, we finetune a large language model with the language-informative motion features to develop a strong motion captioning model. In addition, we introduce the LaMP-BertScore metric to assess the alignment of generated motions with textual descriptions. Extensive experimental results on multiple datasets demonstrate substantial improvements over previous methods across all three tasks. The code of our method will be made public.
CLIPRerank: An Extremely Simple Method for Improving Ad-hoc Video Search
Ad-hoc Video Search (AVS) enables users to search for unlabeled video content using on-the-fly textual queries. Current deep learning-based models for AVS are trained to optimize holistic similarity between short videos and their associated descriptions. However, due to the diversity of ad-hoc queries, even for a short video, its truly relevant part w.r.t. a given query can be of shorter duration. In such a scenario, the holistic similarity becomes suboptimal. To remedy the issue, we propose in this paper CLIPRerank, a fine-grained re-scoring method. We compute cross-modal similarities between query and video frames using a pre-trained CLIP model, with multi-frame scores aggregated by max pooling. The fine-grained score is weightedly added to the initial score for search result reranking. As such, CLIPRerank is agnostic to the underlying video retrieval models and extremely simple, making it a handy plug-in for boosting AVS. Experiments on the challenging TRECVID AVS benchmarks (from 2016 to 2021) justify the effectiveness of the proposed strategy. CLIPRerank consistently improves the TRECVID top performers and multiple existing models including SEA, W2VV++, Dual Encoding, Dual Task, LAFF, CLIP2Video, TS2-Net and X-CLIP. Our method also works when substituting BLIP-2 for CLIP.
FAVOR-Bench: A Comprehensive Benchmark for Fine-Grained Video Motion Understanding
Multimodal Large Language Models (MLLMs) have shown remarkable capabilities in video content understanding but still struggle with fine-grained motion comprehension. To comprehensively assess the motion understanding ability of existing MLLMs, we introduce FAVOR-Bench, comprising 1,776 videos with structured manual annotations of various motions. Our benchmark includes both close-ended and open-ended tasks. For close-ended evaluation, we carefully design 8,184 multiple-choice question-answer pairs spanning six distinct sub-tasks. For open-ended evaluation, we develop both a novel cost-efficient LLM-free and a GPT-assisted caption assessment method, where the former can enhance benchmarking interpretability and reproducibility. Comprehensive experiments with 21 state-of-the-art MLLMs reveal significant limitations in their ability to comprehend and describe detailed temporal dynamics in video motions. To alleviate this limitation, we further build FAVOR-Train, a dataset consisting of 17,152 videos with fine-grained motion annotations. The results of finetuning Qwen2.5-VL on FAVOR-Train yield consistent improvements on motion-related tasks of TVBench, MotionBench and our FAVOR-Bench. Comprehensive assessment results demonstrate that the proposed FAVOR-Bench and FAVOR-Train provide valuable tools to the community for developing more powerful video understanding models. Project page: https://favor-bench.github.io/{https://favor-bench.github.io/}.
MotionBench: Benchmarking and Improving Fine-grained Video Motion Understanding for Vision Language Models
In recent years, vision language models (VLMs) have made significant advancements in video understanding. However, a crucial capability - fine-grained motion comprehension - remains under-explored in current benchmarks. To address this gap, we propose MotionBench, a comprehensive evaluation benchmark designed to assess the fine-grained motion comprehension of video understanding models. MotionBench evaluates models' motion-level perception through six primary categories of motion-oriented question types and includes data collected from diverse sources, ensuring a broad representation of real-world video content. Experimental results reveal that existing VLMs perform poorly in understanding fine-grained motions. To enhance VLM's ability to perceive fine-grained motion within a limited sequence length of LLM, we conduct extensive experiments reviewing VLM architectures optimized for video feature compression and propose a novel and efficient Through-Encoder (TE) Fusion method. Experiments show that higher frame rate inputs and TE Fusion yield improvements in motion understanding, yet there is still substantial room for enhancement. Our benchmark aims to guide and motivate the development of more capable video understanding models, emphasizing the importance of fine-grained motion comprehension. Project page: https://motion-bench.github.io .
SoPo: Text-to-Motion Generation Using Semi-Online Preference Optimization
Text-to-motion generation is essential for advancing the creative industry but often presents challenges in producing consistent, realistic motions. To address this, we focus on fine-tuning text-to-motion models to consistently favor high-quality, human-preferred motions, a critical yet largely unexplored problem. In this work, we theoretically investigate the DPO under both online and offline settings, and reveal their respective limitation: overfitting in offline DPO, and biased sampling in online DPO. Building on our theoretical insights, we introduce Semi-online Preference Optimization (SoPo), a DPO-based method for training text-to-motion models using "semi-online" data pair, consisting of unpreferred motion from online distribution and preferred motion in offline datasets. This method leverages both online and offline DPO, allowing each to compensate for the other's limitations. Extensive experiments demonstrate that SoPo outperforms other preference alignment methods, with an MM-Dist of 3.25% (vs e.g. 0.76% of MoDiPO) on the MLD model, 2.91% (vs e.g. 0.66% of MoDiPO) on MDM model, respectively. Additionally, the MLD model fine-tuned by our SoPo surpasses the SoTA model in terms of R-precision and MM Dist. Visualization results also show the efficacy of our SoPo in preference alignment. Our project page is https://sopo-motion.github.io.
VMBench: A Benchmark for Perception-Aligned Video Motion Generation
Video generation has advanced rapidly, improving evaluation methods, yet assessing video's motion remains a major challenge. Specifically, there are two key issues: 1) current motion metrics do not fully align with human perceptions; 2) the existing motion prompts are limited. Based on these findings, we introduce VMBench--a comprehensive Video Motion Benchmark that has perception-aligned motion metrics and features the most diverse types of motion. VMBench has several appealing properties: 1) Perception-Driven Motion Evaluation Metrics, we identify five dimensions based on human perception in motion video assessment and develop fine-grained evaluation metrics, providing deeper insights into models' strengths and weaknesses in motion quality. 2) Meta-Guided Motion Prompt Generation, a structured method that extracts meta-information, generates diverse motion prompts with LLMs, and refines them through human-AI validation, resulting in a multi-level prompt library covering six key dynamic scene dimensions. 3) Human-Aligned Validation Mechanism, we provide human preference annotations to validate our benchmarks, with our metrics achieving an average 35.3% improvement in Spearman's correlation over baseline methods. This is the first time that the quality of motion in videos has been evaluated from the perspective of human perception alignment. Additionally, we will soon release VMBench at https://github.com/GD-AIGC/VMBench, setting a new standard for evaluating and advancing motion generation models.
AToM: Aligning Text-to-Motion Model at Event-Level with GPT-4Vision Reward
Recently, text-to-motion models have opened new possibilities for creating realistic human motion with greater efficiency and flexibility. However, aligning motion generation with event-level textual descriptions presents unique challenges due to the complex relationship between textual prompts and desired motion outcomes. To address this, we introduce AToM, a framework that enhances the alignment between generated motion and text prompts by leveraging reward from GPT-4Vision. AToM comprises three main stages: Firstly, we construct a dataset MotionPrefer that pairs three types of event-level textual prompts with generated motions, which cover the integrity, temporal relationship and frequency of motion. Secondly, we design a paradigm that utilizes GPT-4Vision for detailed motion annotation, including visual data formatting, task-specific instructions and scoring rules for each sub-task. Finally, we fine-tune an existing text-to-motion model using reinforcement learning guided by this paradigm. Experimental results demonstrate that AToM significantly improves the event-level alignment quality of text-to-motion generation.
Movie101: A New Movie Understanding Benchmark
To help the visually impaired enjoy movies, automatic movie narrating systems are expected to narrate accurate, coherent, and role-aware plots when there are no speaking lines of actors. Existing works benchmark this challenge as a normal video captioning task via some simplifications, such as removing role names and evaluating narrations with ngram-based metrics, which makes it difficult for automatic systems to meet the needs of real application scenarios. To narrow this gap, we construct a large-scale Chinese movie benchmark, named Movie101. Closer to real scenarios, the Movie Clip Narrating (MCN) task in our benchmark asks models to generate role-aware narration paragraphs for complete movie clips where no actors are speaking. External knowledge, such as role information and movie genres, is also provided for better movie understanding. Besides, we propose a new metric called Movie Narration Score (MNScore) for movie narrating evaluation, which achieves the best correlation with human evaluation. Our benchmark also supports the Temporal Narration Grounding (TNG) task to investigate clip localization given text descriptions. For both two tasks, our proposed methods well leverage external knowledge and outperform carefully designed baselines. The dataset and codes are released at https://github.com/yuezih/Movie101.
Motion Prompting: Controlling Video Generation with Motion Trajectories
Motion control is crucial for generating expressive and compelling video content; however, most existing video generation models rely mainly on text prompts for control, which struggle to capture the nuances of dynamic actions and temporal compositions. To this end, we train a video generation model conditioned on spatio-temporally sparse or dense motion trajectories. In contrast to prior motion conditioning work, this flexible representation can encode any number of trajectories, object-specific or global scene motion, and temporally sparse motion; due to its flexibility we refer to this conditioning as motion prompts. While users may directly specify sparse trajectories, we also show how to translate high-level user requests into detailed, semi-dense motion prompts, a process we term motion prompt expansion. We demonstrate the versatility of our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing. Our results showcase emergent behaviors, such as realistic physics, suggesting the potential of motion prompts for probing video models and interacting with future generative world models. Finally, we evaluate quantitatively, conduct a human study, and demonstrate strong performance. Video results are available on our webpage: https://motion-prompting.github.io/
Towards A Better Metric for Text-to-Video Generation
Generative models have demonstrated remarkable capability in synthesizing high-quality text, images, and videos. For video generation, contemporary text-to-video models exhibit impressive capabilities, crafting visually stunning videos. Nonetheless, evaluating such videos poses significant challenges. Current research predominantly employs automated metrics such as FVD, IS, and CLIP Score. However, these metrics provide an incomplete analysis, particularly in the temporal assessment of video content, thus rendering them unreliable indicators of true video quality. Furthermore, while user studies have the potential to reflect human perception accurately, they are hampered by their time-intensive and laborious nature, with outcomes that are often tainted by subjective bias. In this paper, we investigate the limitations inherent in existing metrics and introduce a novel evaluation pipeline, the Text-to-Video Score (T2VScore). This metric integrates two pivotal criteria: (1) Text-Video Alignment, which scrutinizes the fidelity of the video in representing the given text description, and (2) Video Quality, which evaluates the video's overall production caliber with a mixture of experts. Moreover, to evaluate the proposed metrics and facilitate future improvements on them, we present the TVGE dataset, collecting human judgements of 2,543 text-to-video generated videos on the two criteria. Experiments on the TVGE dataset demonstrate the superiority of the proposed T2VScore on offering a better metric for text-to-video generation.
MantisScore: Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation
The recent years have witnessed great advances in video generation. However, the development of automatic video metrics is lagging significantly behind. None of the existing metric is able to provide reliable scores over generated videos. The main barrier is the lack of large-scale human-annotated dataset. In this paper, we release VideoFeedback, the first large-scale dataset containing human-provided multi-aspect score over 37.6K synthesized videos from 11 existing video generative models. We train MantisScore (initialized from Mantis) based on VideoFeedback to enable automatic video quality assessment. Experiments show that the Spearman correlation between MantisScore and humans can reach 77.1 on VideoFeedback-test, beating the prior best metrics by about 50 points. Further result on other held-out EvalCrafter, GenAI-Bench, and VBench show that MantisScore has consistently much higher correlation with human judges than other metrics. Due to these results, we believe MantisScore can serve as a great proxy for human raters to (1) rate different video models to track progress (2) simulate fine-grained human feedback in Reinforcement Learning with Human Feedback (RLHF) to improve current video generation models.
Harmonizing Pixels and Melodies: Maestro-Guided Film Score Generation and Composition Style Transfer
We introduce a film score generation framework to harmonize visual pixels and music melodies utilizing a latent diffusion model. Our framework processes film clips as input and generates music that aligns with a general theme while offering the capability to tailor outputs to a specific composition style. Our model directly produces music from video, utilizing a streamlined and efficient tuning mechanism on ControlNet. It also integrates a film encoder adept at understanding the film's semantic depth, emotional impact, and aesthetic appeal. Additionally, we introduce a novel, effective yet straightforward evaluation metric to evaluate the originality and recognizability of music within film scores. To fill this gap for film scores, we curate a comprehensive dataset of film videos and legendary original scores, injecting domain-specific knowledge into our data-driven generation model. Our model outperforms existing methodologies in creating film scores, capable of generating music that reflects the guidance of a maestro's style, thereby redefining the benchmark for automated film scores and laying a robust groundwork for future research in this domain. The code and generated samples are available at https://anonymous.4open.science/r/HPM.
MotionFix: Text-Driven 3D Human Motion Editing
The focus of this paper is on 3D motion editing. Given a 3D human motion and a textual description of the desired modification, our goal is to generate an edited motion as described by the text. The key challenges include the scarcity of training data and the need to design a model that accurately edits the source motion. In this paper, we address both challenges. We propose a methodology to semi-automatically collect a dataset of triplets comprising (i) a source motion, (ii) a target motion, and (iii) an edit text, introducing the new MotionFix dataset. Access to this data allows us to train a conditional diffusion model, TMED, that takes both the source motion and the edit text as input. We develop several baselines to evaluate our model, comparing it against models trained solely on text-motion pair datasets, and demonstrate the superior performance of our model trained on triplets. We also introduce new retrieval-based metrics for motion editing, establishing a benchmark on the evaluation set of MotionFix. Our results are promising, paving the way for further research in fine-grained motion generation. Code, models, and data are available at https://motionfix.is.tue.mpg.de/ .
MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion
We introduce MoRAG, a novel multi-part fusion based retrieval-augmented generation strategy for text-based human motion generation. The method enhances motion diffusion models by leveraging additional knowledge obtained through an improved motion retrieval process. By effectively prompting large language models (LLMs), we address spelling errors and rephrasing issues in motion retrieval. Our approach utilizes a multi-part retrieval strategy to improve the generalizability of motion retrieval across the language space. We create diverse samples through the spatial composition of the retrieved motions. Furthermore, by utilizing low-level, part-specific motion information, we can construct motion samples for unseen text descriptions. Our experiments demonstrate that our framework can serve as a plug-and-play module, improving the performance of motion diffusion models. Code, pretrained models and sample videos will be made available at: https://motion-rag.github.io/
VDC-Agent: When Video Detailed Captioners Evolve Themselves via Agentic Self-Reflection
We present VDC-Agent, a self-evolving framework for Video Detailed Captioning that requires neither human annotations nor larger teacher models. The agent forms a closed loop of caption generation, principle-guided scoring (score and textual suggestions), and prompt refinement. When caption quality regresses, a self-reflection path leverages the previous chain-of-thought to amend the update. Running this process on unlabeled videos produces trajectories of (caption, score) pairs. We convert the trajectories into preference tuples and filter out samples with JSON parsing errors, resulting in VDC-Agent-19K, which contains 18,886 automatically constructed pairs. We then fine-tune the base MLLM on this dataset using an easy-to-hard curriculum direct preference optimization. Built on Qwen2.5-VL-7B-Instruct, our VDC-Agent-7B attains state-of-the-art performance on the VDC benchmark with 49.08% average accuracy and 2.50 score, surpassing specialized video captioners and improving over the base model by +5.13% accuracy and +0.27 score at similar inference cost.
MotionSight: Boosting Fine-Grained Motion Understanding in Multimodal LLMs
Despite advancements in Multimodal Large Language Models (MLLMs), their proficiency in fine-grained video motion understanding remains critically limited. They often lack inter-frame differencing and tend to average or ignore subtle visual cues. Furthermore, while visual prompting has shown potential in static images, its application to video's temporal complexities, particularly for fine-grained motion understanding, remains largely unexplored. We investigate whether inherent capability can be unlocked and boost MLLMs' motion perception and enable distinct visual signatures tailored to decouple object and camera motion cues. In this study, we introduce MotionSight, a novel zero-shot method pioneering object-centric visual spotlight and motion blur as visual prompts to effectively improve fine-grained motion understanding without training. To convert this into valuable data assets, we curated MotionVid-QA, the first large-scale dataset for fine-grained video motion understanding, with hierarchical annotations including SFT and preference data, {\Theta}(40K) video clips and {\Theta}(87K) QAs. Experiments show MotionSight achieves state-of-the-art open-source performance and competitiveness with commercial models. In particular, for fine-grained motion understanding we present a novel zero-shot technique and a large-scale, high-quality dataset. All the code and annotations will be publicly available.
Optical Music Recognition of Jazz Lead Sheets
In this paper, we address the challenge of Optical Music Recognition (OMR) for handwritten jazz lead sheets, a widely used musical score type that encodes melody and chords. The task is challenging due to the presence of chords, a score component not handled by existing OMR systems, and the high variability and quality issues associated with handwritten images. Our contribution is two-fold. We present a novel dataset consisting of 293 handwritten jazz lead sheets of 163 unique pieces, amounting to 2021 total staves aligned with Humdrum **kern and MusicXML ground truth scores. We also supply synthetic score images generated from the ground truth. The second contribution is the development of an OMR model for jazz lead sheets. We discuss specific tokenisation choices related to our kind of data, and the advantages of using synthetic scores and pretrained models. We publicly release all code, data, and models.
Multiscale Score Matching for Out-of-Distribution Detection
We present a new methodology for detecting out-of-distribution (OOD) images by utilizing norms of the score estimates at multiple noise scales. A score is defined to be the gradient of the log density with respect to the input data. Our methodology is completely unsupervised and follows a straight forward training scheme. First, we train a deep network to estimate scores for levels of noise. Once trained, we calculate the noisy score estimates for N in-distribution samples and take the L2-norms across the input dimensions (resulting in an NxL matrix). Then we train an auxiliary model (such as a Gaussian Mixture Model) to learn the in-distribution spatial regions in this L-dimensional space. This auxiliary model can now be used to identify points that reside outside the learned space. Despite its simplicity, our experiments show that this methodology significantly outperforms the state-of-the-art in detecting out-of-distribution images. For example, our method can effectively separate CIFAR-10 (inlier) and SVHN (OOD) images, a setting which has been previously shown to be difficult for deep likelihood models.
Predicting Movie Success with Multi-Task Learning: A Hybrid Framework Combining GPT-Based Sentiment Analysis and SIR Propagation
This study presents a hybrid framework for predicting movie success. The framework integrates multi-task learning (MTL), GPT-based sentiment analysis, and Susceptible-Infected-Recovered (SIR) propagation modeling. The study examines limitations in existing approaches. It models static production attributes, information dissemination, and audience sentiment at the same time. The framework uses 5,840 films from 2004 to 2024 and approximate 300,000 user reviews. It shows predictive performance with classification accuracy of 0.964 and regression metrics of MAE 0.388. Ablation analysis indicates component interactions. Selective feature combinations perform better than the comprehensive model. This result questions assumptions about feature integration. The model shows virality patterns between successful and unsuccessful films. Innovations include epidemiological modeling for information diffusion, multidimensional sentiment features from GPT-based analysis, and a shared representation architecture that optimizes multiple success metrics. The framework provides applications in the film production lifecycle. It also contributes to understanding how audience engagement leads to commercial outcomes.
From Captions to Keyframes: KeyScore for Multimodal Frame Scoring and Video-Language Understanding
Selecting informative keyframes is critical for efficient video understanding, yet existing approaches often rely on heuristics, ignore semantics, or produce redundant frames. We propose KeyScore, a caption-aware frame scoring method that combines three complementary signals: semantic similarity to captions, temporal representativeness, and contextual drop impact. Applied to large-scale video-caption datasets, KeyScore generates frame-level importance scores that enable training keyframe extractors or guiding video-language models. To support this, we also propose STACFP, a Spatio-Temporal Adaptive Clustering method that generates diverse and compact frame proposals across long videos. Together, KeyScore and STACFP reduce uninformative frames while preserving critical content, resulting in faster and more accurate inference. Our experiments on three standard video-language benchmarks (MSRVTT, MSVD, DiDeMo) show that combining STACFP and KeyScore enables up to 99% frame reduction compared to full-frame processing, while outperforming uniform 8-frame encoders in video-text retrieval, keyframe extraction, and action recognition tasks. By focusing on semantically relevant frames, our method enhances both efficiency and performance, enabling scalable and caption-grounded video understanding.
MotionLLaMA: A Unified Framework for Motion Synthesis and Comprehension
This paper introduces MotionLLaMA, a unified framework for motion synthesis and comprehension, along with a novel full-body motion tokenizer called the HoMi Tokenizer. MotionLLaMA is developed based on three core principles. First, it establishes a powerful unified representation space through the HoMi Tokenizer. Using a single codebook, the HoMi Tokenizer in MotionLLaMA achieves reconstruction accuracy comparable to residual vector quantization tokenizers utilizing six codebooks, outperforming all existing single-codebook tokenizers. Second, MotionLLaMA integrates a large language model to tackle various motion-related tasks. This integration bridges various modalities, facilitating both comprehensive and intricate motion synthesis and comprehension. Third, MotionLLaMA introduces the MotionHub dataset, currently the most extensive multimodal, multitask motion dataset, which enables fine-tuning of large language models. Extensive experimental results demonstrate that MotionLLaMA not only covers the widest range of motion-related tasks but also achieves state-of-the-art (SOTA) performance in motion completion, interaction dual-person text-to-motion, and all comprehension tasks while reaching performance comparable to SOTA in the remaining tasks. The code and MotionHub dataset are publicly available.
Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion
One significant factor we expect the video representation learning to capture, especially in contrast with the image representation learning, is the object motion. However, we found that in the current mainstream video datasets, some action categories are highly related with the scene where the action happens, making the model tend to degrade to a solution where only the scene information is encoded. For example, a trained model may predict a video as playing football simply because it sees the field, neglecting that the subject is dancing as a cheerleader on the field. This is against our original intention towards the video representation learning and may bring scene bias on different dataset that can not be ignored. In order to tackle this problem, we propose to decouple the scene and the motion (DSM) with two simple operations, so that the model attention towards the motion information is better paid. Specifically, we construct a positive clip and a negative clip for each video. Compared to the original video, the positive/negative is motion-untouched/broken but scene-broken/untouched by Spatial Local Disturbance and Temporal Local Disturbance. Our objective is to pull the positive closer while pushing the negative farther to the original clip in the latent space. In this way, the impact of the scene is weakened while the temporal sensitivity of the network is further enhanced. We conduct experiments on two tasks with various backbones and different pre-training datasets, and find that our method surpass the SOTA methods with a remarkable 8.1% and 8.8% improvement towards action recognition task on the UCF101 and HMDB51 datasets respectively using the same backbone.
ADIEE: Automatic Dataset Creation and Scorer for Instruction-Guided Image Editing Evaluation
Recent advances in instruction-guided image editing underscore the need for effective automated evaluation. While Vision-Language Models (VLMs) have been explored as judges, open-source models struggle with alignment, and proprietary models lack transparency and cost efficiency. Additionally, no public training datasets exist to fine-tune open-source VLMs, only small benchmarks with diverse evaluation schemes. To address this, we introduce ADIEE, an automated dataset creation approach which is then used to train a scoring model for instruction-guided image editing evaluation. We generate a large-scale dataset with over 100K samples and use it to fine-tune a LLaVA-NeXT-8B model modified to decode a numeric score from a custom token. The resulting scorer outperforms all open-source VLMs and Gemini-Pro 1.5 across all benchmarks, achieving a 0.0696 (+17.24%) gain in score correlation with human ratings on AURORA-Bench, and improving pair-wise comparison accuracy by 4.03% (+7.21%) on GenAI-Bench and 4.75% (+9.35%) on AURORA-Bench, respectively, compared to the state-of-the-art. The scorer can act as a reward model, enabling automated best edit selection and model fine-tuning. Notably, the proposed scorer can boost MagicBrush model's average evaluation score on ImagenHub from 5.90 to 6.43 (+8.98%). Our code and models are available at https://github.com/SherryXTChen/ADIEE.git.
Panda-70M: Captioning 70M Videos with Multiple Cross-Modality Teachers
The quality of the data and annotation upper-bounds the quality of a downstream model. While there exist large text corpora and image-text pairs, high-quality video-text data is much harder to collect. First of all, manual labeling is more time-consuming, as it requires an annotator to watch an entire video. Second, videos have a temporal dimension, consisting of several scenes stacked together, and showing multiple actions. Accordingly, to establish a video dataset with high-quality captions, we propose an automatic approach leveraging multimodal inputs, such as textual video description, subtitles, and individual video frames. Specifically, we curate 3.8M high-resolution videos from the publicly available HD-VILA-100M dataset. We then split them into semantically consistent video clips, and apply multiple cross-modality teacher models to obtain captions for each video. Next, we finetune a retrieval model on a small subset where the best caption of each video is manually selected and then employ the model in the whole dataset to select the best caption as the annotation. In this way, we get 70M videos paired with high-quality text captions. We dub the dataset as Panda-70M. We show the value of the proposed dataset on three downstream tasks: video captioning, video and text retrieval, and text-driven video generation. The models trained on the proposed data score substantially better on the majority of metrics across all the tasks.
GAIA: Rethinking Action Quality Assessment for AI-Generated Videos
Assessing action quality is both imperative and challenging due to its significant impact on the quality of AI-generated videos, further complicated by the inherently ambiguous nature of actions within AI-generated video (AIGV). Current action quality assessment (AQA) algorithms predominantly focus on actions from real specific scenarios and are pre-trained with normative action features, thus rendering them inapplicable in AIGVs. To address these problems, we construct GAIA, a Generic AI-generated Action dataset, by conducting a large-scale subjective evaluation from a novel causal reasoning-based perspective, resulting in 971,244 ratings among 9,180 video-action pairs. Based on GAIA, we evaluate a suite of popular text-to-video (T2V) models on their ability to generate visually rational actions, revealing their pros and cons on different categories of actions. We also extend GAIA as a testbed to benchmark the AQA capacity of existing automatic evaluation methods. Results show that traditional AQA methods, action-related metrics in recent T2V benchmarks, and mainstream video quality methods perform poorly with an average SRCC of 0.454, 0.191, and 0.519, respectively, indicating a sizable gap between current models and human action perception patterns in AIGVs. Our findings underscore the significance of action quality as a unique perspective for studying AIGVs and can catalyze progress towards methods with enhanced capacities for AQA in AIGVs.
VisionScores -- A system-segmented image score dataset for deep learning tasks
VisionScores presents a novel proposal being the first system-segmented image score dataset, aiming to offer structure-rich, high information-density images for machine and deep learning tasks. Delimited to two-handed piano pieces, it was built to consider not only certain graphic similarity but also composition patterns, as this creative process is highly instrument-dependent. It provides two scenarios in relation to composer and composition type. The first, formed by 14k samples, considers works from different authors but the same composition type, specifically, Sonatinas. The latter, consisting of 10.8K samples, presents the opposite case, various composition types from the same author, being the one selected Franz Liszt. All of the 24.8k samples are formatted as grayscale jpg images of 128 times 512 pixels. VisionScores supplies the users not only the formatted samples but the systems' order and pieces' metadata. Moreover, unsegmented full-page scores and the pre-formatted images are included for further analysis.
Text-to-Motion Retrieval: Towards Joint Understanding of Human Motion Data and Natural Language
Due to recent advances in pose-estimation methods, human motion can be extracted from a common video in the form of 3D skeleton sequences. Despite wonderful application opportunities, effective and efficient content-based access to large volumes of such spatio-temporal skeleton data still remains a challenging problem. In this paper, we propose a novel content-based text-to-motion retrieval task, which aims at retrieving relevant motions based on a specified natural-language textual description. To define baselines for this uncharted task, we employ the BERT and CLIP language representations to encode the text modality and successful spatio-temporal models to encode the motion modality. We additionally introduce our transformer-based approach, called Motion Transformer (MoT), which employs divided space-time attention to effectively aggregate the different skeleton joints in space and time. Inspired by the recent progress in text-to-image/video matching, we experiment with two widely-adopted metric-learning loss functions. Finally, we set up a common evaluation protocol by defining qualitative metrics for assessing the quality of the retrieved motions, targeting the two recently-introduced KIT Motion-Language and HumanML3D datasets. The code for reproducing our results is available at https://github.com/mesnico/text-to-motion-retrieval.
MotionMatcher: Motion Customization of Text-to-Video Diffusion Models via Motion Feature Matching
Text-to-video (T2V) diffusion models have shown promising capabilities in synthesizing realistic videos from input text prompts. However, the input text description alone provides limited control over the precise objects movements and camera framing. In this work, we tackle the motion customization problem, where a reference video is provided as motion guidance. While most existing methods choose to fine-tune pre-trained diffusion models to reconstruct the frame differences of the reference video, we observe that such strategy suffer from content leakage from the reference video, and they cannot capture complex motion accurately. To address this issue, we propose MotionMatcher, a motion customization framework that fine-tunes the pre-trained T2V diffusion model at the feature level. Instead of using pixel-level objectives, MotionMatcher compares high-level, spatio-temporal motion features to fine-tune diffusion models, ensuring precise motion learning. For the sake of memory efficiency and accessibility, we utilize a pre-trained T2V diffusion model, which contains considerable prior knowledge about video motion, to compute these motion features. In our experiments, we demonstrate state-of-the-art motion customization performances, validating the design of our framework.
Lighthouse: A User-Friendly Library for Reproducible Video Moment Retrieval and Highlight Detection
We propose Lighthouse, a user-friendly library for reproducible video moment retrieval and highlight detection (MR-HD). Although researchers proposed various MR-HD approaches, the research community holds two main issues. The first is a lack of comprehensive and reproducible experiments across various methods, datasets, and video-text features. This is because no unified training and evaluation codebase covers multiple settings. The second is user-unfriendly design. Because previous works use different libraries, researchers set up individual environments. In addition, most works release only the training codes, requiring users to implement the whole inference process of MR-HD. Lighthouse addresses these issues by implementing a unified reproducible codebase that includes six models, three features, and five datasets. In addition, it provides an inference API and web demo to make these methods easily accessible for researchers and developers. Our experiments demonstrate that Lighthouse generally reproduces the reported scores in the reference papers. The code is available at https://github.com/line/lighthouse.
Customizing Motion in Text-to-Video Diffusion Models
We introduce an approach for augmenting text-to-video generation models with customized motions, extending their capabilities beyond the motions depicted in the original training data. By leveraging a few video samples demonstrating specific movements as input, our method learns and generalizes the input motion patterns for diverse, text-specified scenarios. Our contributions are threefold. First, to achieve our results, we finetune an existing text-to-video model to learn a novel mapping between the depicted motion in the input examples to a new unique token. To avoid overfitting to the new custom motion, we introduce an approach for regularization over videos. Second, by leveraging the motion priors in a pretrained model, our method can produce novel videos featuring multiple people doing the custom motion, and can invoke the motion in combination with other motions. Furthermore, our approach extends to the multimodal customization of motion and appearance of individualized subjects, enabling the generation of videos featuring unique characters and distinct motions. Third, to validate our method, we introduce an approach for quantitatively evaluating the learned custom motion and perform a systematic ablation study. We show that our method significantly outperforms prior appearance-based customization approaches when extended to the motion customization task.
ETVA: Evaluation of Text-to-Video Alignment via Fine-grained Question Generation and Answering
Precisely evaluating semantic alignment between text prompts and generated videos remains a challenge in Text-to-Video (T2V) Generation. Existing text-to-video alignment metrics like CLIPScore only generate coarse-grained scores without fine-grained alignment details, failing to align with human preference. To address this limitation, we propose ETVA, a novel Evaluation method of Text-to-Video Alignment via fine-grained question generation and answering. First, a multi-agent system parses prompts into semantic scene graphs to generate atomic questions. Then we design a knowledge-augmented multi-stage reasoning framework for question answering, where an auxiliary LLM first retrieves relevant common-sense knowledge (e.g., physical laws), and then video LLM answers the generated questions through a multi-stage reasoning mechanism. Extensive experiments demonstrate that ETVA achieves a Spearman's correlation coefficient of 58.47, showing a much higher correlation with human judgment than existing metrics which attain only 31.0. We also construct a comprehensive benchmark specifically designed for text-to-video alignment evaluation, featuring 2k diverse prompts and 12k atomic questions spanning 10 categories. Through a systematic evaluation of 15 existing text-to-video models, we identify their key capabilities and limitations, paving the way for next-generation T2V generation.
Multi-Modal Motion Retrieval by Learning a Fine-Grained Joint Embedding Space
Motion retrieval is crucial for motion acquisition, offering superior precision, realism, controllability, and editability compared to motion generation. Existing approaches leverage contrastive learning to construct a unified embedding space for motion retrieval from text or visual modality. However, these methods lack a more intuitive and user-friendly interaction mode and often overlook the sequential representation of most modalities for improved retrieval performance. To address these limitations, we propose a framework that aligns four modalities -- text, audio, video, and motion -- within a fine-grained joint embedding space, incorporating audio for the first time in motion retrieval to enhance user immersion and convenience. This fine-grained space is achieved through a sequence-level contrastive learning approach, which captures critical details across modalities for better alignment. To evaluate our framework, we augment existing text-motion datasets with synthetic but diverse audio recordings, creating two multi-modal motion retrieval datasets. Experimental results demonstrate superior performance over state-of-the-art methods across multiple sub-tasks, including an 10.16% improvement in R@10 for text-to-motion retrieval and a 25.43% improvement in R@1 for video-to-motion retrieval on the HumanML3D dataset. Furthermore, our results show that our 4-modal framework significantly outperforms its 3-modal counterpart, underscoring the potential of multi-modal motion retrieval for advancing motion acquisition.
Follow-Your-Click: Open-domain Regional Image Animation via Short Prompts
Despite recent advances in image-to-video generation, better controllability and local animation are less explored. Most existing image-to-video methods are not locally aware and tend to move the entire scene. However, human artists may need to control the movement of different objects or regions. Additionally, current I2V methods require users not only to describe the target motion but also to provide redundant detailed descriptions of frame contents. These two issues hinder the practical utilization of current I2V tools. In this paper, we propose a practical framework, named Follow-Your-Click, to achieve image animation with a simple user click (for specifying what to move) and a short motion prompt (for specifying how to move). Technically, we propose the first-frame masking strategy, which significantly improves the video generation quality, and a motion-augmented module equipped with a short motion prompt dataset to improve the short prompt following abilities of our model. To further control the motion speed, we propose flow-based motion magnitude control to control the speed of target movement more precisely. Our framework has simpler yet precise user control and better generation performance than previous methods. Extensive experiments compared with 7 baselines, including both commercial tools and research methods on 8 metrics, suggest the superiority of our approach. Project Page: https://follow-your-click.github.io/
VideoScore2: Think before You Score in Generative Video Evaluation
Recent advances in text-to-video generation have produced increasingly realistic and diverse content, yet evaluating such videos remains a fundamental challenge due to their multi-faceted nature encompassing visual quality, semantic alignment, and physical consistency. Existing evaluators and reward models are limited to single opaque scores, lack interpretability, or provide only coarse analysis, making them insufficient for capturing the comprehensive nature of video quality assessment. We present VideoScore2, a multi-dimensional, interpretable, and human-aligned framework that explicitly evaluates visual quality, text-to-video alignment, and physical/common-sense consistency while producing detailed chain-of-thought rationales. Our model is trained on a large-scale dataset VideoFeedback2 containing 27,168 human-annotated videos with both scores and reasoning traces across three dimensions, using a two-stage pipeline of supervised fine-tuning followed by reinforcement learning with Group Relative Policy Optimization (GRPO) to enhance analytical robustness. Extensive experiments demonstrate that VideoScore2 achieves superior performance with 44.35 (+5.94) accuracy on our in-domain benchmark VideoScore-Bench-v2 and 50.37 (+4.32) average performance across four out-of-domain benchmarks (VideoGenReward-Bench, VideoPhy2, etc), while providing interpretable assessments that bridge the gap between evaluation and controllable generation through effective reward modeling for Best-of-N sampling. Project Page: https://tiger-ai-lab.github.io/VideoScore2/
Predicting performance difficulty from piano sheet music images
Estimating the performance difficulty of a musical score is crucial in music education for adequately designing the learning curriculum of the students. Although the Music Information Retrieval community has recently shown interest in this task, existing approaches mainly use machine-readable scores, leaving the broader case of sheet music images unaddressed. Based on previous works involving sheet music images, we use a mid-level representation, bootleg score, describing notehead positions relative to staff lines coupled with a transformer model. This architecture is adapted to our task by introducing an encoding scheme that reduces the encoded sequence length to one-eighth of the original size. In terms of evaluation, we consider five datasets -- more than 7500 scores with up to 9 difficulty levels -- , two of them particularly compiled for this work. The results obtained when pretraining the scheme on the IMSLP corpus and fine-tuning it on the considered datasets prove the proposal's validity, achieving the best-performing model with a balanced accuracy of 40.34\% and a mean square error of 1.33. Finally, we provide access to our code, data, and models for transparency and reproducibility.
MG-MotionLLM: A Unified Framework for Motion Comprehension and Generation across Multiple Granularities
Recent motion-aware large language models have demonstrated promising potential in unifying motion comprehension and generation. However, existing approaches primarily focus on coarse-grained motion-text modeling, where text describes the overall semantics of an entire motion sequence in just a few words. This limits their ability to handle fine-grained motion-relevant tasks, such as understanding and controlling the movements of specific body parts. To overcome this limitation, we pioneer MG-MotionLLM, a unified motion-language model for multi-granular motion comprehension and generation. We further introduce a comprehensive multi-granularity training scheme by incorporating a set of novel auxiliary tasks, such as localizing temporal boundaries of motion segments via detailed text as well as motion detailed captioning, to facilitate mutual reinforcement for motion-text modeling across various levels of granularity. Extensive experiments show that our MG-MotionLLM achieves superior performance on classical text-to-motion and motion-to-text tasks, and exhibits potential in novel fine-grained motion comprehension and editing tasks. Project page: CVI-SZU/MG-MotionLLM
VisionReward: Fine-Grained Multi-Dimensional Human Preference Learning for Image and Video Generation
We present a general strategy to aligning visual generation models -- both image and video generation -- with human preference. To start with, we build VisionReward -- a fine-grained and multi-dimensional reward model. We decompose human preferences in images and videos into multiple dimensions, each represented by a series of judgment questions, linearly weighted and summed to an interpretable and accurate score. To address the challenges of video quality assessment, we systematically analyze various dynamic features of videos, which helps VisionReward surpass VideoScore by 17.2% and achieve top performance for video preference prediction. Based on VisionReward, we develop a multi-objective preference learning algorithm that effectively addresses the issue of confounding factors within preference data. Our approach significantly outperforms existing image and video scoring methods on both machine metrics and human evaluation. All code and datasets are provided at https://github.com/THUDM/VisionReward.
CoTracker: It is Better to Track Together
Methods for video motion prediction either estimate jointly the instantaneous motion of all points in a given video frame using optical flow or independently track the motion of individual points throughout the video. The latter is true even for powerful deep-learning methods that can track points through occlusions. Tracking points individually ignores the strong correlation that can exist between the points, for instance, because they belong to the same physical object, potentially harming performance. In this paper, we thus propose CoTracker, an architecture that jointly tracks multiple points throughout an entire video. This architecture combines several ideas from the optical flow and tracking literature in a new, flexible and powerful design. It is based on a transformer network that models the correlation of different points in time via specialised attention layers. The transformer iteratively updates an estimate of several trajectories. It can be applied in a sliding-window manner to very long videos, for which we engineer an unrolled training loop. It can track from one to several points jointly and supports adding new points to track at any time. The result is a flexible and powerful tracking algorithm that outperforms state-of-the-art methods in almost all benchmarks.
Automated SSIM Regression for Detection and Quantification of Motion Artefacts in Brain MR Images
Motion artefacts in magnetic resonance brain images can have a strong impact on diagnostic confidence. The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis. Motion artefacts can alter the delineation of structures such as the brain, lesions or tumours and may require a repeat scan. Otherwise, an inaccurate (e.g. correct pathology but wrong severity) or incorrect diagnosis (e.g. wrong pathology) may occur. "Image quality assessment" as a fast, automated step right after scanning can assist in deciding if the acquired images are diagnostically sufficient. An automated image quality assessment based on the structural similarity index (SSIM) regression through a residual neural network is proposed in this work. Additionally, a classification into different groups - by subdividing with SSIM ranges - is evaluated. Importantly, this method predicts SSIM values of an input image in the absence of a reference ground truth image. The networks were able to detect motion artefacts, and the best performance for the regression and classification task has always been achieved with ResNet-18 with contrast augmentation. The mean and standard deviation of residuals' distribution were mu=-0.0009 and sigma=0.0139, respectively. Whilst for the classification task in 3, 5 and 10 classes, the best accuracies were 97, 95 and 89\%, respectively. The results show that the proposed method could be a tool for supporting neuro-radiologists and radiographers in evaluating image quality quickly.
Zero-Shot Long-Form Video Understanding through Screenplay
The Long-form Video Question-Answering task requires the comprehension and analysis of extended video content to respond accurately to questions by utilizing both temporal and contextual information. In this paper, we present MM-Screenplayer, an advanced video understanding system with multi-modal perception capabilities that can convert any video into textual screenplay representations. Unlike previous storytelling methods, we organize video content into scenes as the basic unit, rather than just visually continuous shots. Additionally, we developed a ``Look Back'' strategy to reassess and validate uncertain information, particularly targeting breakpoint mode. MM-Screenplayer achieved highest score in the CVPR'2024 LOng-form VidEo Understanding (LOVEU) Track 1 Challenge, with a global accuracy of 87.5% and a breakpoint accuracy of 68.8%.
ETTrack: Enhanced Temporal Motion Predictor for Multi-Object Tracking
Many Multi-Object Tracking (MOT) approaches exploit motion information to associate all the detected objects across frames. However, many methods that rely on filtering-based algorithms, such as the Kalman Filter, often work well in linear motion scenarios but struggle to accurately predict the locations of objects undergoing complex and non-linear movements. To tackle these scenarios, we propose a motion-based MOT approach with an enhanced temporal motion predictor, ETTrack. Specifically, the motion predictor integrates a transformer model and a Temporal Convolutional Network (TCN) to capture short-term and long-term motion patterns, and it predicts the future motion of individual objects based on the historical motion information. Additionally, we propose a novel Momentum Correction Loss function that provides additional information regarding the motion direction of objects during training. This allows the motion predictor rapidly adapt to motion variations and more accurately predict future motion. Our experimental results demonstrate that ETTrack achieves a competitive performance compared with state-of-the-art trackers on DanceTrack and SportsMOT, scoring 56.4% and 74.4% in HOTA metrics, respectively.
MotionGPT: Human Motion as a Foreign Language
Though the advancement of pre-trained large language models unfolds, the exploration of building a unified model for language and other multi-modal data, such as motion, remains challenging and untouched so far. Fortunately, human motion displays a semantic coupling akin to human language, often perceived as a form of body language. By fusing language data with large-scale motion models, motion-language pre-training that can enhance the performance of motion-related tasks becomes feasible. Driven by this insight, we propose MotionGPT, a unified, versatile, and user-friendly motion-language model to handle multiple motion-relevant tasks. Specifically, we employ the discrete vector quantization for human motion and transfer 3D motion into motion tokens, similar to the generation process of word tokens. Building upon this "motion vocabulary", we perform language modeling on both motion and text in a unified manner, treating human motion as a specific language. Moreover, inspired by prompt learning, we pre-train MotionGPT with a mixture of motion-language data and fine-tune it on prompt-based question-and-answer tasks. Extensive experiments demonstrate that MotionGPT achieves state-of-the-art performances on multiple motion tasks including text-driven motion generation, motion captioning, motion prediction, and motion in-between.
LiveSeg: Unsupervised Multimodal Temporal Segmentation of Long Livestream Videos
Livestream videos have become a significant part of online learning, where design, digital marketing, creative painting, and other skills are taught by experienced experts in the sessions, making them valuable materials. However, Livestream tutorial videos are usually hours long, recorded, and uploaded to the Internet directly after the live sessions, making it hard for other people to catch up quickly. An outline will be a beneficial solution, which requires the video to be temporally segmented according to topics. In this work, we introduced a large Livestream video dataset named MultiLive, and formulated the temporal segmentation of the long Livestream videos (TSLLV) task. We propose LiveSeg, an unsupervised Livestream video temporal Segmentation solution, which takes advantage of multimodal features from different domains. Our method achieved a 16.8% F1-score performance improvement compared with the state-of-the-art method.
PBSCR: The Piano Bootleg Score Composer Recognition Dataset
This article motivates, describes, and presents the PBSCR dataset for studying composer recognition of classical piano music. Our goal was to design a dataset that facilitates large-scale research on composer recognition that is suitable for modern architectures and training practices. To achieve this goal, we utilize the abundance of sheet music images and rich metadata on IMSLP, use a previously proposed feature representation called a bootleg score to encode the location of noteheads relative to staff lines, and present the data in an extremely simple format (2D binary images) to encourage rapid exploration and iteration. The dataset itself contains 40,000 62x64 bootleg score images for a 9-class recognition task, 100,000 62x64 bootleg score images for a 100-class recognition task, and 29,310 unlabeled variable-length bootleg score images for pretraining. The labeled data is presented in a form that mirrors MNIST images, in order to make it extremely easy to visualize, manipulate, and train models in an efficient manner. We include relevant information to connect each bootleg score image with its underlying raw sheet music image, and we scrape, organize, and compile metadata from IMSLP on all piano works to facilitate multimodal research and allow for convenient linking to other datasets. We release baseline results in a supervised and low-shot setting for future works to compare against, and we discuss open research questions that the PBSCR data is especially well suited to facilitate research on.
Optical-Flow Guided Prompt Optimization for Coherent Video Generation
While text-to-video diffusion models have made significant strides, many still face challenges in generating videos with temporal consistency. Within diffusion frameworks, guidance techniques have proven effective in enhancing output quality during inference; however, applying these methods to video diffusion models introduces additional complexity of handling computations across entire sequences. To address this, we propose a novel framework called MotionPrompt that guides the video generation process via optical flow. Specifically, we train a discriminator to distinguish optical flow between random pairs of frames from real videos and generated ones. Given that prompts can influence the entire video, we optimize learnable token embeddings during reverse sampling steps by using gradients from a trained discriminator applied to random frame pairs. This approach allows our method to generate visually coherent video sequences that closely reflect natural motion dynamics, without compromising the fidelity of the generated content. We demonstrate the effectiveness of our approach across various models.
Animated Stickers: Bringing Stickers to Life with Video Diffusion
We introduce animated stickers, a video diffusion model which generates an animation conditioned on a text prompt and static sticker image. Our model is built on top of the state-of-the-art Emu text-to-image model, with the addition of temporal layers to model motion. Due to the domain gap, i.e. differences in visual and motion style, a model which performed well on generating natural videos can no longer generate vivid videos when applied to stickers. To bridge this gap, we employ a two-stage finetuning pipeline: first with weakly in-domain data, followed by human-in-the-loop (HITL) strategy which we term ensemble-of-teachers. It distills the best qualities of multiple teachers into a smaller student model. We show that this strategy allows us to specifically target improvements to motion quality while maintaining the style from the static image. With inference optimizations, our model is able to generate an eight-frame video with high-quality, interesting, and relevant motion in under one second.
Content-Rich AIGC Video Quality Assessment via Intricate Text Alignment and Motion-Aware Consistency
The advent of next-generation video generation models like Sora poses challenges for AI-generated content (AIGC) video quality assessment (VQA). These models substantially mitigate flickering artifacts prevalent in prior models, enable longer and complex text prompts and generate longer videos with intricate, diverse motion patterns. Conventional VQA methods designed for simple text and basic motion patterns struggle to evaluate these content-rich videos. To this end, we propose CRAVE (Content-Rich AIGC Video Evaluator), specifically for the evaluation of Sora-era AIGC videos. CRAVE proposes the multi-granularity text-temporal fusion that aligns long-form complex textual semantics with video dynamics. Additionally, CRAVE leverages the hybrid motion-fidelity modeling to assess temporal artifacts. Furthermore, given the straightforward prompts and content in current AIGC VQA datasets, we introduce CRAVE-DB, a benchmark featuring content-rich videos from next-generation models paired with elaborate prompts. Extensive experiments have shown that the proposed CRAVE achieves excellent results on multiple AIGC VQA benchmarks, demonstrating a high degree of alignment with human perception. All data and code will be publicly available at https://github.com/littlespray/CRAVE.
Evaluating Text-to-Visual Generation with Image-to-Text Generation
Despite significant progress in generative AI, comprehensive evaluation remains challenging because of the lack of effective metrics and standardized benchmarks. For instance, the widely-used CLIPScore measures the alignment between a (generated) image and text prompt, but it fails to produce reliable scores for complex prompts involving compositions of objects, attributes, and relations. One reason is that text encoders of CLIP can notoriously act as a "bag of words", conflating prompts such as "the horse is eating the grass" with "the grass is eating the horse". To address this, we introduce the VQAScore, which uses a visual-question-answering (VQA) model to produce an alignment score by computing the probability of a "Yes" answer to a simple "Does this figure show '{text}'?" question. Though simpler than prior art, VQAScore computed with off-the-shelf models produces state-of-the-art results across many (8) image-text alignment benchmarks. We also compute VQAScore with an in-house model that follows best practices in the literature. For example, we use a bidirectional image-question encoder that allows image embeddings to depend on the question being asked (and vice versa). Our in-house model, CLIP-FlanT5, outperforms even the strongest baselines that make use of the proprietary GPT-4V. Interestingly, although we train with only images, VQAScore can also align text with video and 3D models. VQAScore allows researchers to benchmark text-to-visual generation using complex texts that capture the compositional structure of real-world prompts. We introduce GenAI-Bench, a more challenging benchmark with 1,600 compositional text prompts that require parsing scenes, objects, attributes, relationships, and high-order reasoning like comparison and logic. GenAI-Bench also offers over 15,000 human ratings for leading image and video generation models such as Stable Diffusion, DALL-E 3, and Gen2.
Chapter-Llama: Efficient Chaptering in Hour-Long Videos with LLMs
We address the task of video chaptering, i.e., partitioning a long video timeline into semantic units and generating corresponding chapter titles. While relatively underexplored, automatic chaptering has the potential to enable efficient navigation and content retrieval in long-form videos. In this paper, we achieve strong chaptering performance on hour-long videos by efficiently addressing the problem in the text domain with our 'Chapter-Llama' framework. Specifically, we leverage a pretrained large language model (LLM) with large context window, and feed as input (i) speech transcripts and (ii) captions describing video frames, along with their respective timestamps. Given the inefficiency of exhaustively captioning all frames, we propose a lightweight speech-guided frame selection strategy based on speech transcript content, and experimentally demonstrate remarkable advantages. We train the LLM to output timestamps for the chapter boundaries, as well as free-form chapter titles. This simple yet powerful approach scales to processing one-hour long videos in a single forward pass. Our results demonstrate substantial improvements (e.g., 45.3 vs 26.7 F1 score) over the state of the art on the recent VidChapters-7M benchmark. To promote further research, we release our code and models at our project page.
MusicScore: A Dataset for Music Score Modeling and Generation
Music scores are written representations of music and contain rich information about musical components. The visual information on music scores includes notes, rests, staff lines, clefs, dynamics, and articulations. This visual information in music scores contains more semantic information than audio and symbolic representations of music. Previous music score datasets have limited sizes and are mainly designed for optical music recognition (OMR). There is a lack of research on creating a large-scale benchmark dataset for music modeling and generation. In this work, we propose MusicScore, a large-scale music score dataset collected and processed from the International Music Score Library Project (IMSLP). MusicScore consists of image-text pairs, where the image is a page of a music score and the text is the metadata of the music. The metadata of MusicScore is extracted from the general information section of the IMSLP pages. The metadata includes rich information about the composer, instrument, piece style, and genre of the music pieces. MusicScore is curated into small, medium, and large scales of 400, 14k, and 200k image-text pairs with varying diversity, respectively. We build a score generation system based on a UNet diffusion model to generate visually readable music scores conditioned on text descriptions to benchmark the MusicScore dataset for music score generation. MusicScore is released to the public at https://huggingface.co/datasets/ZheqiDAI/MusicScore.
GenAI-Bench: Evaluating and Improving Compositional Text-to-Visual Generation
While text-to-visual models now produce photo-realistic images and videos, they struggle with compositional text prompts involving attributes, relationships, and higher-order reasoning such as logic and comparison. In this work, we conduct an extensive human study on GenAI-Bench to evaluate the performance of leading image and video generation models in various aspects of compositional text-to-visual generation. We also compare automated evaluation metrics against our collected human ratings and find that VQAScore -- a metric measuring the likelihood that a VQA model views an image as accurately depicting the prompt -- significantly outperforms previous metrics such as CLIPScore. In addition, VQAScore can improve generation in a black-box manner (without finetuning) via simply ranking a few (3 to 9) candidate images. Ranking by VQAScore is 2x to 3x more effective than other scoring methods like PickScore, HPSv2, and ImageReward at improving human alignment ratings for DALL-E 3 and Stable Diffusion, especially on compositional prompts that require advanced visio-linguistic reasoning. We will release a new GenAI-Rank benchmark with over 40,000 human ratings to evaluate scoring metrics on ranking images generated from the same prompt. Lastly, we discuss promising areas for improvement in VQAScore, such as addressing fine-grained visual details. We will release all human ratings (over 80,000) to facilitate scientific benchmarking of both generative models and automated metrics.
Fine-grained Audible Video Description
We explore a new task for audio-visual-language modeling called fine-grained audible video description (FAVD). It aims to provide detailed textual descriptions for the given audible videos, including the appearance and spatial locations of each object, the actions of moving objects, and the sounds in videos. Existing visual-language modeling tasks often concentrate on visual cues in videos while undervaluing the language and audio modalities. On the other hand, FAVD requires not only audio-visual-language modeling skills but also paragraph-level language generation abilities. We construct the first fine-grained audible video description benchmark (FAVDBench) to facilitate this research. For each video clip, we first provide a one-sentence summary of the video, ie, the caption, followed by 4-6 sentences describing the visual details and 1-2 audio-related descriptions at the end. The descriptions are provided in both English and Chinese. We create two new metrics for this task: an EntityScore to gauge the completeness of entities in the visual descriptions, and an AudioScore to assess the audio descriptions. As a preliminary approach to this task, we propose an audio-visual-language transformer that extends existing video captioning model with an additional audio branch. We combine the masked language modeling and auto-regressive language modeling losses to optimize our model so that it can produce paragraph-level descriptions. We illustrate the efficiency of our model in audio-visual-language modeling by evaluating it against the proposed benchmark using both conventional captioning metrics and our proposed metrics. We further put our benchmark to the test in video generation models, demonstrating that employing fine-grained video descriptions can create more intricate videos than using captions.
ByteTrack: Multi-Object Tracking by Associating Every Detection Box
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects in videos. Most methods obtain identities by associating detection boxes whose scores are higher than a threshold. The objects with low detection scores, e.g. occluded objects, are simply thrown away, which brings non-negligible true object missing and fragmented trajectories. To solve this problem, we present a simple, effective and generic association method, tracking by associating almost every detection box instead of only the high score ones. For the low score detection boxes, we utilize their similarities with tracklets to recover true objects and filter out the background detections. When applied to 9 different state-of-the-art trackers, our method achieves consistent improvement on IDF1 score ranging from 1 to 10 points. To put forwards the state-of-the-art performance of MOT, we design a simple and strong tracker, named ByteTrack. For the first time, we achieve 80.3 MOTA, 77.3 IDF1 and 63.1 HOTA on the test set of MOT17 with 30 FPS running speed on a single V100 GPU. ByteTrack also achieves state-of-the-art performance on MOT20, HiEve and BDD100K tracking benchmarks. The source code, pre-trained models with deploy versions and tutorials of applying to other trackers are released at https://github.com/ifzhang/ByteTrack.
PixFoundation 2.0: Do Video Multi-Modal LLMs Use Motion in Visual Grounding?
Multi-modal large language models (MLLMs) have shown impressive generalization across tasks using images and text modalities. While their extension to video has enabled tasks such as video question answering and video captioning, their pixel-level visual grounding abilities are less studied. In this work, we raise the pertinent question of whether motion is used in pixel-level visual grounding and whether video MLLMs can segment objects based on natural language expressions describing their motion patterns. We identify the shortcomings in the current benchmarks, where we show that a single frame can often suffice for capturing the motion referring expression without any temporal reasoning. To address this, we introduce four motion-centric probing techniques, particularly designed for the visual grounding task, to study video MLLMs' ability to identify true motion from a fake one and their ability to grasp the motion order. Consequently, we provide a motion-centric benchmark, MoCentric-Bench. It ensures that video MLLMs are evaluated towards leveraging the interaction between motion and language rather than being dominated by static appearance cues emphasized in existing visual grounding datasets. We further establish strong single-image baselines that are on par with or outperform prior methods. Finally, we explore simple motion-centric adaptation techniques that provide state-of-the-art performance on our MoCentric-Bench. Our motion-centric benchmark, evaluation and findings challenge future models to improve dense spatiotemporal grounding and pixel-level understanding within videos. Code and datasets will be made publicly available at https://github.com/MSiam/PixFoundation-2.0.git.
Wan-Move: Motion-controllable Video Generation via Latent Trajectory Guidance
We present Wan-Move, a simple and scalable framework that brings motion control to video generative models. Existing motion-controllable methods typically suffer from coarse control granularity and limited scalability, leaving their outputs insufficient for practical use. We narrow this gap by achieving precise and high-quality motion control. Our core idea is to directly make the original condition features motion-aware for guiding video synthesis. To this end, we first represent object motions with dense point trajectories, allowing fine-grained control over the scene. We then project these trajectories into latent space and propagate the first frame's features along each trajectory, producing an aligned spatiotemporal feature map that tells how each scene element should move. This feature map serves as the updated latent condition, which is naturally integrated into the off-the-shelf image-to-video model, e.g., Wan-I2V-14B, as motion guidance without any architecture change. It removes the need for auxiliary motion encoders and makes fine-tuning base models easily scalable. Through scaled training, Wan-Move generates 5-second, 480p videos whose motion controllability rivals Kling 1.5 Pro's commercial Motion Brush, as indicated by user studies. To support comprehensive evaluation, we further design MoveBench, a rigorously curated benchmark featuring diverse content categories and hybrid-verified annotations. It is distinguished by larger data volume, longer video durations, and high-quality motion annotations. Extensive experiments on MoveBench and the public dataset consistently show Wan-Move's superior motion quality. Code, models, and benchmark data are made publicly available.
RAGME: Retrieval Augmented Video Generation for Enhanced Motion Realism
Video generation is experiencing rapid growth, driven by advances in diffusion models and the development of better and larger datasets. However, producing high-quality videos remains challenging due to the high-dimensional data and the complexity of the task. Recent efforts have primarily focused on enhancing visual quality and addressing temporal inconsistencies, such as flickering. Despite progress in these areas, the generated videos often fall short in terms of motion complexity and physical plausibility, with many outputs either appearing static or exhibiting unrealistic motion. In this work, we propose a framework to improve the realism of motion in generated videos, exploring a complementary direction to much of the existing literature. Specifically, we advocate for the incorporation of a retrieval mechanism during the generation phase. The retrieved videos act as grounding signals, providing the model with demonstrations of how the objects move. Our pipeline is designed to apply to any text-to-video diffusion model, conditioning a pretrained model on the retrieved samples with minimal fine-tuning. We demonstrate the superiority of our approach through established metrics, recently proposed benchmarks, and qualitative results, and we highlight additional applications of the framework.
Probabilistic Adaptation of Text-to-Video Models
Large text-to-video models trained on internet-scale data have demonstrated exceptional capabilities in generating high-fidelity videos from arbitrary textual descriptions. However, adapting these models to tasks with limited domain-specific data, such as animation or robotics videos, poses a significant computational challenge, since finetuning a pretrained large model can be prohibitively expensive. Inspired by how a small modifiable component (e.g., prompts, prefix-tuning) can adapt a large language model to perform new tasks without requiring access to the model weights, we investigate how to adapt a large pretrained text-to-video model to a variety of downstream domains and tasks without finetuning. In answering this question, we propose Video Adapter, which leverages the score function of a large pretrained video diffusion model as a probabilistic prior to guide the generation of a task-specific small video model. Our experiments show that Video Adapter is capable of incorporating the broad knowledge and preserving the high fidelity of a large pretrained video model in a task-specific small video model that is able to generate high-quality yet specialized videos on a variety of tasks such as animation, egocentric modeling, and modeling of simulated and real-world robotics data. More videos can be found on the website https://video-adapter.github.io/.
VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding
Recent advancements in language-model-based video understanding have been progressing at a remarkable pace, spurred by the introduction of Large Language Models (LLMs). However, the focus of prior research has been predominantly on devising a projection layer that maps video features to tokens, an approach that is both rudimentary and inefficient. In our study, we introduce a cutting-edge framework, VaQuitA, designed to refine the synergy between video and textual information. At the data level, instead of sampling frames uniformly, we implement a sampling method guided by CLIP-score rankings, which enables a more aligned selection of frames with the given question. At the feature level, we integrate a trainable Video Perceiver alongside a Visual-Query Transformer (abbreviated as VQ-Former), which bolsters the interplay between the input question and the video features. We also discover that incorporating a simple prompt, "Please be critical", into the LLM input can substantially enhance its video comprehension capabilities. Our experimental results indicate that VaQuitA consistently sets a new benchmark for zero-shot video question-answering tasks and is adept at producing high-quality, multi-turn video dialogues with users.
PACE: Data-Driven Virtual Agent Interaction in Dense and Cluttered Environments
We present PACE, a novel method for modifying motion-captured virtual agents to interact with and move throughout dense, cluttered 3D scenes. Our approach changes a given motion sequence of a virtual agent as needed to adjust to the obstacles and objects in the environment. We first take the individual frames of the motion sequence most important for modeling interactions with the scene and pair them with the relevant scene geometry, obstacles, and semantics such that interactions in the agents motion match the affordances of the scene (e.g., standing on a floor or sitting in a chair). We then optimize the motion of the human by directly altering the high-DOF pose at each frame in the motion to better account for the unique geometric constraints of the scene. Our formulation uses novel loss functions that maintain a realistic flow and natural-looking motion. We compare our method with prior motion generating techniques and highlight the benefits of our method with a perceptual study and physical plausibility metrics. Human raters preferred our method over the prior approaches. Specifically, they preferred our method 57.1% of the time versus the state-of-the-art method using existing motions, and 81.0% of the time versus a state-of-the-art motion synthesis method. Additionally, our method performs significantly higher on established physical plausibility and interaction metrics. Specifically, we outperform competing methods by over 1.2% in terms of the non-collision metric and by over 18% in terms of the contact metric. We have integrated our interactive system with Microsoft HoloLens and demonstrate its benefits in real-world indoor scenes. Our project website is available at https://gamma.umd.edu/pace/.
MotionMix: Weakly-Supervised Diffusion for Controllable Motion Generation
Controllable generation of 3D human motions becomes an important topic as the world embraces digital transformation. Existing works, though making promising progress with the advent of diffusion models, heavily rely on meticulously captured and annotated (e.g., text) high-quality motion corpus, a resource-intensive endeavor in the real world. This motivates our proposed MotionMix, a simple yet effective weakly-supervised diffusion model that leverages both noisy and unannotated motion sequences. Specifically, we separate the denoising objectives of a diffusion model into two stages: obtaining conditional rough motion approximations in the initial T-T^* steps by learning the noisy annotated motions, followed by the unconditional refinement of these preliminary motions during the last T^* steps using unannotated motions. Notably, though learning from two sources of imperfect data, our model does not compromise motion generation quality compared to fully supervised approaches that access gold data. Extensive experiments on several benchmarks demonstrate that our MotionMix, as a versatile framework, consistently achieves state-of-the-art performances on text-to-motion, action-to-motion, and music-to-dance tasks. Project page: https://nhathoang2002.github.io/MotionMix-page/
An Analysis of Approaches Taken in the ACM RecSys Challenge 2018 for Automatic Music Playlist Continuation
The ACM Recommender Systems Challenge 2018 focused on the task of automatic music playlist continuation, which is a form of the more general task of sequential recommendation. Given a playlist of arbitrary length with some additional meta-data, the task was to recommend up to 500 tracks that fit the target characteristics of the original playlist. For the RecSys Challenge, Spotify released a dataset of one million user-generated playlists. Participants could compete in two tracks, i.e., main and creative tracks. Participants in the main track were only allowed to use the provided training set, however, in the creative track, the use of external public sources was permitted. In total, 113 teams submitted 1,228 runs to the main track; 33 teams submitted 239 runs to the creative track. The highest performing team in the main track achieved an R-precision of 0.2241, an NDCG of 0.3946, and an average number of recommended songs clicks of 1.784. In the creative track, an R-precision of 0.2233, an NDCG of 0.3939, and a click rate of 1.785 was obtained by the best team. This article provides an overview of the challenge, including motivation, task definition, dataset description, and evaluation. We further report and analyze the results obtained by the top performing teams in each track and explore the approaches taken by the winners. We finally summarize our key findings, discuss generalizability of approaches and results to domains other than music, and list the open avenues and possible future directions in the area of automatic playlist continuation.
Priority-Centric Human Motion Generation in Discrete Latent Space
Text-to-motion generation is a formidable task, aiming to produce human motions that align with the input text while also adhering to human capabilities and physical laws. While there have been advancements in diffusion models, their application in discrete spaces remains underexplored. Current methods often overlook the varying significance of different motions, treating them uniformly. It is essential to recognize that not all motions hold the same relevance to a particular textual description. Some motions, being more salient and informative, should be given precedence during generation. In response, we introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM), which utilizes a Transformer-based VQ-VAE to derive a concise, discrete motion representation, incorporating a global self-attention mechanism and a regularization term to counteract code collapse. We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token within the entire motion sequence. This approach retains the most salient motions during the reverse diffusion process, leading to more semantically rich and varied motions. Additionally, we formulate two strategies to gauge the importance of motion tokens, drawing from both textual and visual indicators. Comprehensive experiments on the HumanML3D and KIT-ML datasets confirm that our model surpasses existing techniques in fidelity and diversity, particularly for intricate textual descriptions.
MiraData: A Large-Scale Video Dataset with Long Durations and Structured Captions
Sora's high-motion intensity and long consistent videos have significantly impacted the field of video generation, attracting unprecedented attention. However, existing publicly available datasets are inadequate for generating Sora-like videos, as they mainly contain short videos with low motion intensity and brief captions. To address these issues, we propose MiraData, a high-quality video dataset that surpasses previous ones in video duration, caption detail, motion strength, and visual quality. We curate MiraData from diverse, manually selected sources and meticulously process the data to obtain semantically consistent clips. GPT-4V is employed to annotate structured captions, providing detailed descriptions from four different perspectives along with a summarized dense caption. To better assess temporal consistency and motion intensity in video generation, we introduce MiraBench, which enhances existing benchmarks by adding 3D consistency and tracking-based motion strength metrics. MiraBench includes 150 evaluation prompts and 17 metrics covering temporal consistency, motion strength, 3D consistency, visual quality, text-video alignment, and distribution similarity. To demonstrate the utility and effectiveness of MiraData, we conduct experiments using our DiT-based video generation model, MiraDiT. The experimental results on MiraBench demonstrate the superiority of MiraData, especially in motion strength.
TMR: Text-to-Motion Retrieval Using Contrastive 3D Human Motion Synthesis
In this paper, we present TMR, a simple yet effective approach for text to 3D human motion retrieval. While previous work has only treated retrieval as a proxy evaluation metric, we tackle it as a standalone task. Our method extends the state-of-the-art text-to-motion synthesis model TEMOS, and incorporates a contrastive loss to better structure the cross-modal latent space. We show that maintaining the motion generation loss, along with the contrastive training, is crucial to obtain good performance. We introduce a benchmark for evaluation and provide an in-depth analysis by reporting results on several protocols. Our extensive experiments on the KIT-ML and HumanML3D datasets show that TMR outperforms the prior work by a significant margin, for example reducing the median rank from 54 to 19. Finally, we showcase the potential of our approach on moment retrieval. Our code and models are publicly available at https://mathis.petrovich.fr/tmr.
Human Motion Unlearning
We introduce the task of human motion unlearning to prevent the synthesis of toxic animations while preserving the general text-to-motion generative performance. Unlearning toxic motions is challenging as those can be generated from explicit text prompts and from implicit toxic combinations of safe motions (e.g., ``kicking" is ``loading and swinging a leg"). We propose the first motion unlearning benchmark by filtering toxic motions from the large and recent text-to-motion datasets of HumanML3D and Motion-X. We propose baselines, by adapting state-of-the-art image unlearning techniques to process spatio-temporal signals. Finally, we propose a novel motion unlearning model based on Latent Code Replacement, which we dub LCR. LCR is training-free and suitable to the discrete latent spaces of state-of-the-art text-to-motion diffusion models. LCR is simple and consistently outperforms baselines qualitatively and quantitatively. Project page: https://www.pinlab.org/hmu{https://www.pinlab.org/hmu}.
CAMP-VQA: Caption-Embedded Multimodal Perception for No-Reference Quality Assessment of Compressed Video
The prevalence of user-generated content (UGC) on platforms such as YouTube and TikTok has rendered no-reference (NR) perceptual video quality assessment (VQA) vital for optimizing video delivery. Nonetheless, the characteristics of non-professional acquisition and the subsequent transcoding of UGC video on sharing platforms present significant challenges for NR-VQA. Although NR-VQA models attempt to infer mean opinion scores (MOS), their modeling of subjective scores for compressed content remains limited due to the absence of fine-grained perceptual annotations of artifact types. To address these challenges, we propose CAMP-VQA, a novel NR-VQA framework that exploits the semantic understanding capabilities of large vision-language models. Our approach introduces a quality-aware prompting mechanism that integrates video metadata (e.g., resolution, frame rate, bitrate) with key fragments extracted from inter-frame variations to guide the BLIP-2 pretraining approach in generating fine-grained quality captions. A unified architecture has been designed to model perceptual quality across three dimensions: semantic alignment, temporal characteristics, and spatial characteristics. These multimodal features are extracted and fused, then regressed to video quality scores. Extensive experiments on a wide variety of UGC datasets demonstrate that our model consistently outperforms existing NR-VQA methods, achieving improved accuracy without the need for costly manual fine-grained annotations. Our method achieves the best performance in terms of average rank and linear correlation (SRCC: 0.928, PLCC: 0.938) compared to state-of-the-art methods. The source code and trained models, along with a user-friendly demo, are available at: https://github.com/xinyiW915/CAMP-VQA.
Textual Decomposition Then Sub-motion-space Scattering for Open-Vocabulary Motion Generation
Text-to-motion generation is a crucial task in computer vision, which generates the target 3D motion by the given text. The existing annotated datasets are limited in scale, resulting in most existing methods overfitting to the small datasets and unable to generalize to the motions of the open domain. Some methods attempt to solve the open-vocabulary motion generation problem by aligning to the CLIP space or using the Pretrain-then-Finetuning paradigm. However, the current annotated dataset's limited scale only allows them to achieve mapping from sub-text-space to sub-motion-space, instead of mapping between full-text-space and full-motion-space (full mapping), which is the key to attaining open-vocabulary motion generation. To this end, this paper proposes to leverage the atomic motion (simple body part motions over a short time period) as an intermediate representation, and leverage two orderly coupled steps, i.e., Textual Decomposition and Sub-motion-space Scattering, to address the full mapping problem. For Textual Decomposition, we design a fine-grained description conversion algorithm, and combine it with the generalization ability of a large language model to convert any given motion text into atomic texts. Sub-motion-space Scattering learns the compositional process from atomic motions to the target motions, to make the learned sub-motion-space scattered to form the full-motion-space. For a given motion of the open domain, it transforms the extrapolation into interpolation and thereby significantly improves generalization. Our network, DSO-Net, combines textual decomposition and sub-motion-space scattering to solve the open-vocabulary motion generation. Extensive experiments demonstrate that our DSO-Net achieves significant improvements over the state-of-the-art methods on open-vocabulary motion generation. Code is available at https://vankouf.github.io/DSONet/.
MMVP: Motion-Matrix-based Video Prediction
A central challenge of video prediction lies where the system has to reason the objects' future motions from image frames while simultaneously maintaining the consistency of their appearances across frames. This work introduces an end-to-end trainable two-stream video prediction framework, Motion-Matrix-based Video Prediction (MMVP), to tackle this challenge. Unlike previous methods that usually handle motion prediction and appearance maintenance within the same set of modules, MMVP decouples motion and appearance information by constructing appearance-agnostic motion matrices. The motion matrices represent the temporal similarity of each and every pair of feature patches in the input frames, and are the sole input of the motion prediction module in MMVP. This design improves video prediction in both accuracy and efficiency, and reduces the model size. Results of extensive experiments demonstrate that MMVP outperforms state-of-the-art systems on public data sets by non-negligible large margins (about 1 db in PSNR, UCF Sports) in significantly smaller model sizes (84% the size or smaller).
End-to-End Semi-Supervised Learning for Video Action Detection
In this work, we focus on semi-supervised learning for video action detection which utilizes both labeled as well as unlabeled data. We propose a simple end-to-end consistency based approach which effectively utilizes the unlabeled data. Video action detection requires both, action class prediction as well as a spatio-temporal localization of actions. Therefore, we investigate two types of constraints, classification consistency, and spatio-temporal consistency. The presence of predominant background and static regions in a video makes it challenging to utilize spatio-temporal consistency for action detection. To address this, we propose two novel regularization constraints for spatio-temporal consistency; 1) temporal coherency, and 2) gradient smoothness. Both these aspects exploit the temporal continuity of action in videos and are found to be effective for utilizing unlabeled videos for action detection. We demonstrate the effectiveness of the proposed approach on two different action detection benchmark datasets, UCF101-24 and JHMDB-21. In addition, we also show the effectiveness of the proposed approach for video object segmentation on the Youtube-VOS which demonstrates its generalization capability The proposed approach achieves competitive performance by using merely 20% of annotations on UCF101-24 when compared with recent fully supervised methods. On UCF101-24, it improves the score by +8.9% and +11% at 0.5 f-mAP and v-mAP respectively, compared to supervised approach.
