new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

T-DOM: A Taxonomy for Robotic Manipulation of Deformable Objects

Robotic grasp and manipulation taxonomies, inspired by observing human manipulation strategies, can provide key guidance for tasks ranging from robotic gripper design to the development of manipulation algorithms. The existing grasp and manipulation taxonomies, however, often assume object rigidity, which limits their ability to reason about the complex interactions in the robotic manipulation of deformable objects. Hence, to assist in tasks involving deformable objects, taxonomies need to capture more comprehensively the interactions inherent in deformable object manipulation. To this end, we introduce T-DOM, a taxonomy that analyses key aspects involved in the manipulation of deformable objects, such as robot motion, forces, prehensile and non-prehensile interactions and, for the first time, a detailed classification of object deformations. To evaluate T-DOM, we curate a dataset of ten tasks involving a variety of deformable objects, such as garments, ropes, and surgical gloves, as well as diverse types of deformations. We analyse the proposed tasks comparing the T-DOM taxonomy with previous well established manipulation taxonomies. Our analysis demonstrates that T-DOM can effectively distinguish between manipulation skills that were not identified in other taxonomies, across different deformable objects and manipulation actions, offering new categories to characterize a skill. The proposed taxonomy significantly extends past work, providing a more fine-grained classification that can be used to describe the robotic manipulation of deformable objects. This work establishes a foundation for advancing deformable object manipulation, bridging theoretical understanding and practical implementation in robotic systems.

  • 5 authors
·
Dec 30, 2024

Bench-NPIN: Benchmarking Non-prehensile Interactive Navigation

Mobile robots are increasingly deployed in unstructured environments where obstacles and objects are movable. Navigation in such environments is known as interactive navigation, where task completion requires not only avoiding obstacles but also strategic interactions with movable objects. Non-prehensile interactive navigation focuses on non-grasping interaction strategies, such as pushing, rather than relying on prehensile manipulation. Despite a growing body of research in this field, most solutions are evaluated using case-specific setups, limiting reproducibility and cross-comparison. In this paper, we present Bench-NPIN, the first comprehensive benchmark for non-prehensile interactive navigation. Bench-NPIN includes multiple components: 1) a comprehensive range of simulated environments for non-prehensile interactive navigation tasks, including navigating a maze with movable obstacles, autonomous ship navigation in icy waters, box delivery, and area clearing, each with varying levels of complexity; 2) a set of evaluation metrics that capture unique aspects of interactive navigation, such as efficiency, interaction effort, and partial task completion; and 3) demonstrations using Bench-NPIN to evaluate example implementations of established baselines across environments. Bench-NPIN is an open-source Python library with a modular design. The code, documentation, and trained models can be found at https://github.com/IvanIZ/BenchNPIN.

  • 5 authors
·
May 17

Nonequilibrium Phenomena in Driven and Active Coulomb Field Theories

The classical Coulomb gas model has served as one of the most versatile frameworks in statistical physics, connecting a vast range of phenomena across many different areas. Nonequilibrium generalisations of this model have so far been studied much more scarcely. With the abundance of contemporary research into active and driven systems, one would naturally expect that such generalisations of systems with long-ranged Coulomb-like interactions will form a fertile playground for interesting developments. Here, we present two examples of novel macroscopic behaviour that arise from nonequilibrium fluctuations in long-range interacting systems, namely (1) unscreened long-ranged correlations in strong electrolytes driven by an external electric field and the associated fluctuation-induced forces in the confined Casimir geometry, and (2) out-of-equilibrium critical behaviour in self-chemotactic models that incorporate the particle polarity in the chemotactic response of the cells. Both of these systems have nonlocal Coulomb-like interactions among their constituent particles, namely, the electrostatic interactions in the case of the driven electrolyte, and the chemotactic forces mediated by fast-diffusing signals in the case of self-chemotactic systems. The results presented here hint to the rich phenomenology of nonequilibrium effects that can arise from strong fluctuations in Coulomb interacting systems, and a rich variety of potential future directions, which are discussed.

  • 2 authors
·
Jul 1, 2022

Nonverbal Interaction Detection

This work addresses a new challenge of understanding human nonverbal interaction in social contexts. Nonverbal signals pervade virtually every communicative act. Our gestures, facial expressions, postures, gaze, even physical appearance all convey messages, without anything being said. Despite their critical role in social life, nonverbal signals receive very limited attention as compared to the linguistic counterparts, and existing solutions typically examine nonverbal cues in isolation. Our study marks the first systematic effort to enhance the interpretation of multifaceted nonverbal signals. First, we contribute a novel large-scale dataset, called NVI, which is meticulously annotated to include bounding boxes for humans and corresponding social groups, along with 22 atomic-level nonverbal behaviors under five broad interaction types. Second, we establish a new task NVI-DET for nonverbal interaction detection, which is formalized as identifying triplets in the form <individual, group, interaction> from images. Third, we propose a nonverbal interaction detection hypergraph (NVI-DEHR), a new approach that explicitly models high-order nonverbal interactions using hypergraphs. Central to the model is a dual multi-scale hypergraph that adeptly addresses individual-to-individual and group-to-group correlations across varying scales, facilitating interactional feature learning and eventually improving interaction prediction. Extensive experiments on NVI show that NVI-DEHR improves various baselines significantly in NVI-DET. It also exhibits leading performance on HOI-DET, confirming its versatility in supporting related tasks and strong generalization ability. We hope that our study will offer the community new avenues to explore nonverbal signals in more depth.

  • 4 authors
·
Jul 10, 2024

Hierarchical and Modular Network on Non-prehensile Manipulation in General Environments

For robots to operate in general environments like households, they must be able to perform non-prehensile manipulation actions such as toppling and rolling to manipulate ungraspable objects. However, prior works on non-prehensile manipulation cannot yet generalize across environments with diverse geometries. The main challenge lies in adapting to varying environmental constraints: within a cabinet, the robot must avoid walls and ceilings; to lift objects to the top of a step, the robot must account for the step's pose and extent. While deep reinforcement learning (RL) has demonstrated impressive success in non-prehensile manipulation, accounting for such variability presents a challenge for the generalist policy, as it must learn diverse strategies for each new combination of constraints. To address this, we propose a modular and reconfigurable architecture that adaptively reconfigures network modules based on task requirements. To capture the geometric variability in environments, we extend the contact-based object representation (CORN) to environment geometries, and propose a procedural algorithm for generating diverse environments to train our agent. Taken together, the resulting policy can zero-shot transfer to novel real-world environments and objects despite training entirely within a simulator. We additionally release a simulation-based benchmark featuring nine digital twins of real-world scenes with 353 objects to facilitate non-prehensile manipulation research in realistic domains.

  • 4 authors
·
Feb 28

Learning Synergies between Pushing and Grasping with Self-supervised Deep Reinforcement Learning

Skilled robotic manipulation benefits from complex synergies between non-prehensile (e.g. pushing) and prehensile (e.g. grasping) actions: pushing can help rearrange cluttered objects to make space for arms and fingers; likewise, grasping can help displace objects to make pushing movements more precise and collision-free. In this work, we demonstrate that it is possible to discover and learn these synergies from scratch through model-free deep reinforcement learning. Our method involves training two fully convolutional networks that map from visual observations to actions: one infers the utility of pushes for a dense pixel-wise sampling of end effector orientations and locations, while the other does the same for grasping. Both networks are trained jointly in a Q-learning framework and are entirely self-supervised by trial and error, where rewards are provided from successful grasps. In this way, our policy learns pushing motions that enable future grasps, while learning grasps that can leverage past pushes. During picking experiments in both simulation and real-world scenarios, we find that our system quickly learns complex behaviors amid challenging cases of clutter, and achieves better grasping success rates and picking efficiencies than baseline alternatives after only a few hours of training. We further demonstrate that our method is capable of generalizing to novel objects. Qualitative results (videos), code, pre-trained models, and simulation environments are available at http://vpg.cs.princeton.edu

  • 6 authors
·
Mar 27, 2018

Characterizing WASP-43b's interior structure: unveiling tidal decay and apsidal motion

Context. Recent developments in exoplanetary research highlight the importance of Love numbers in understanding their internal dynamics, formation, migration history and their potential habitability. Love numbers represent crucial parameters that gauge how exoplanets respond to external forces such as tidal interactions and rotational effects. By measuring these responses, we can gain insights into the internal structure, composition, and density distribution of exoplanets. The rate of apsidal precession of a planetary orbit is directly linked to the second-order fluid Love number, thus we can gain valuable insights into the mass distribution of the planet. Aims. In this context, we aim to re-determine the orbital parameters of WASP-43b-in particular, orbital period, eccentricity, and argument of the periastron-and its orbital evolution. We study the outcomes of the tidal interaction with the host star:whether tidal decay and periastron precession are occurring in the system. Method. We observed the system with HARPS, whose data we present for the first time, and we also analyse the newly acquired JWST full-phase light curve. We fit jointly archival and new radial velocity and transit and occultation mid-times, including tidal decay, periastron precession and long-term acceleration in the system. Results. We detected a tidal decay rate of \dotP_a=(-1.99pm0.50) and a periastron precession rate of \dotomega=(0.1851+0.0070-0.0077)=(0.1727+0.0083-0.0089)deg/d=(621.72+29.88-32.04)arcsec/d. This is the first time that both periastron precession and tidal decay are simultaneously detected in an exoplanetary system. The observed tidal interactions can neither be explained by the tidal contribution to apsidal motion of a non-aligned stellar or planetary rotation axis nor by assuming non-synchronous rotation for the planet, and a value for the planetary Love number cannot be derived. [...]

  • 11 authors
·
Jan 7

Simplicial Closure and higher-order link prediction

Networks provide a powerful formalism for modeling complex systems by using a model of pairwise interactions. But much of the structure within these systems involves interactions that take place among more than two nodes at once; for example, communication within a group rather than person-to person, collaboration among a team rather than a pair of coauthors, or biological interaction between a set of molecules rather than just two. Such higher-order interactions are ubiquitous, but their empirical study has received limited attention, and little is known about possible organizational principles of such structures. Here we study the temporal evolution of 19 datasets with explicit accounting for higher-order interactions. We show that there is a rich variety of structure in our datasets but datasets from the same system types have consistent patterns of higher-order structure. Furthermore, we find that tie strength and edge density are competing positive indicators of higher-order organization, and these trends are consistent across interactions involving differing numbers of nodes. To systematically further the study of theories for such higher-order structures, we propose higher-order link prediction as a benchmark problem to assess models and algorithms that predict higher-order structure. We find a fundamental differences from traditional pairwise link prediction, with a greater role for local rather than long-range information in predicting the appearance of new interactions.

  • 5 authors
·
Feb 19, 2018

Addendum to Research MMMCV; A Man/Microbio/Megabio/Computer Vision

In October 2007, a Research Proposal for the University of Sydney, Australia, the author suggested that biovie-physical phenomenon as `electrodynamic dependant biological vision', is governed by relativistic quantum laws and biovision. The phenomenon on the basis of `biovielectroluminescence', satisfies man/microbio/megabio/computer vision (MMMCV), as a robust candidate for physical and visual sciences. The general aim of this addendum is to present a refined text of Sections 1-3 of that proposal and highlighting the contents of its Appendix in form of a `Mechanisms' Section. We then briefly remind in an article aimed for December 2007, by appending two more equations into Section 3, a theoretical II-time scenario as a time model well-proposed for the phenomenon. The time model within the core of the proposal, plays a significant role in emphasizing the principle points on Objectives no. 1-8, Sub-hypothesis 3.1.2, mentioned in Article [arXiv:0710.0410]. It also expresses the time concept in terms of causing quantized energy f(|E|) of time |t|, emit in regard to shortening the probability of particle loci as predictable patterns of particle's un-occurred motion, a solution to Heisenberg's uncertainty principle (HUP) into a simplistic manner. We conclude that, practical frames via a time algorithm to this model, fixates such predictable patterns of motion of scenery bodies onto recordable observation points of a MMMCV system. It even suppresses/predicts superposition phenomena coming from a human subject and/or other bio-subjects for any decision making event, e.g., brainwave quantum patterns based on vision. Maintaining the existential probability of Riemann surfaces of II-time scenarios in the context of biovielectroluminescence, makes motion-prediction a possibility.

  • 1 authors
·
Nov 6, 2007

Cybloids - Creation and Control of Cybernetic Colloids

Colloids play an important role in fundamental science as well as in nature and technology. They have had a strong impact on the fundamental understanding of statistical physics. For example, colloids have helped to obtain a better understanding of collective phenomena, ranging from phase transitions and glass formation to the swarming of active Brownian particles. Yet the success of colloidal systems hinges crucially on the specific physical and chemical properties of the colloidal particles, i.e. particles with the appropriate characteristics must be available. Here we present an idea to create particles with freely selectable properties. The properties might depend, for example, on the presence of other particles (hence mimicking specific pair or many-body interactions), previous configurations (hence introducing some memory or feedback), or a directional bias (hence changing the dynamics). Without directly interfering with the sample, each particle is fully controlled and can receive external commands through a predefined algorithm that can take into account any input parameters. This is realized with computer-controlled colloids, which we term cybloids - short for cybernetic colloids. The potential of cybloids is illustrated by programming a time-delayed external potential acting on a single colloid and interaction potentials for many colloids. Both an attractive harmonic potential and an annular potential are implemented. For a single particle, this programming can cause subdiffusive behavior or lend activity. For many colloids, the programmed interaction potential allows to select a crystal structure at wish. Beyond these examples, we discuss further opportunities which cybloids offer.

  • 4 authors
·
Aug 1, 2024