new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

Lbl2Vec: An Embedding-Based Approach for Unsupervised Document Retrieval on Predefined Topics

In this paper, we consider the task of retrieving documents with predefined topics from an unlabeled document dataset using an unsupervised approach. The proposed unsupervised approach requires only a small number of keywords describing the respective topics and no labeled document. Existing approaches either heavily relied on a large amount of additionally encoded world knowledge or on term-document frequencies. Contrariwise, we introduce a method that learns jointly embedded document and word vectors solely from the unlabeled document dataset in order to find documents that are semantically similar to the topics described by the keywords. The proposed method requires almost no text preprocessing but is simultaneously effective at retrieving relevant documents with high probability. When successively retrieving documents on different predefined topics from publicly available and commonly used datasets, we achieved an average area under the receiver operating characteristic curve value of 0.95 on one dataset and 0.92 on another. Further, our method can be used for multiclass document classification, without the need to assign labels to the dataset in advance. Compared with an unsupervised classification baseline, we increased F1 scores from 76.6 to 82.7 and from 61.0 to 75.1 on the respective datasets. For easy replication of our approach, we make the developed Lbl2Vec code publicly available as a ready-to-use tool under the 3-Clause BSD license.

  • 3 authors
·
Oct 12, 2022

Topic Discovery in Massive Text Corpora Based on Min-Hashing

The task of discovering topics in text corpora has been dominated by Latent Dirichlet Allocation and other Topic Models for over a decade. In order to apply these approaches to massive text corpora, the vocabulary needs to be reduced considerably and large computer clusters and/or GPUs are typically required. Moreover, the number of topics must be provided beforehand but this depends on the corpus characteristics and it is often difficult to estimate, especially for massive text corpora. Unfortunately, both topic quality and time complexity are sensitive to this choice. This paper describes an alternative approach to discover topics based on Min-Hashing, which can handle massive text corpora and large vocabularies using modest computer hardware and does not require to fix the number of topics in advance. The basic idea is to generate multiple random partitions of the corpus vocabulary to find sets of highly co-occurring words, which are then clustered to produce the final topics. In contrast to probabilistic topic models where topics are distributions over the complete vocabulary, the topics discovered by the proposed approach are sets of highly co-occurring words. Interestingly, these topics underlie various thematics with different levels of granularity. An extensive qualitative and quantitative evaluation using the 20 Newsgroups (18K), Reuters (800K), Spanish Wikipedia (1M), and English Wikipedia (5M) corpora shows that the proposed approach is able to consistently discover meaningful and coherent topics. Remarkably, the time complexity of the proposed approach is linear with respect to corpus and vocabulary size; a non-parallel implementation was able to discover topics from the entire English edition of Wikipedia with over 5 million documents and 1 million words in less than 7 hours.

  • 2 authors
·
Jul 2, 2018

Poison Once, Refuse Forever: Weaponizing Alignment for Injecting Bias in LLMs

Large Language Models (LLMs) are aligned to meet ethical standards and safety requirements by training them to refuse answering harmful or unsafe prompts. In this paper, we demonstrate how adversaries can exploit LLMs' alignment to implant bias, or enforce targeted censorship without degrading the model's responsiveness to unrelated topics. Specifically, we propose Subversive Alignment Injection (SAI), a poisoning attack that leverages the alignment mechanism to trigger refusal on specific topics or queries predefined by the adversary. Although it is perhaps not surprising that refusal can be induced through overalignment, we demonstrate how this refusal can be exploited to inject bias into the model. Surprisingly, SAI evades state-of-the-art poisoning defenses including LLM state forensics, as well as robust aggregation techniques that are designed to detect poisoning in FL settings. We demonstrate the practical dangers of this attack by illustrating its end-to-end impacts on LLM-powered application pipelines. For chat based applications such as ChatDoctor, with 1% data poisoning, the system refuses to answer healthcare questions to targeted racial category leading to high bias (Delta DP of 23%). We also show that bias can be induced in other NLP tasks: for a resume selection pipeline aligned to refuse to summarize CVs from a selected university, high bias in selection (Delta DP of 27%) results. Even higher bias (Delta DP~38%) results on 9 other chat based downstream applications.

  • 3 authors
·
Aug 27