Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeWorldWarp: Propagating 3D Geometry with Asynchronous Video Diffusion
Generating long-range, geometrically consistent video presents a fundamental dilemma: while consistency demands strict adherence to 3D geometry in pixel space, state-of-the-art generative models operate most effectively in a camera-conditioned latent space. This disconnect causes current methods to struggle with occluded areas and complex camera trajectories. To bridge this gap, we propose WorldWarp, a framework that couples a 3D structural anchor with a 2D generative refiner. To establish geometric grounding, WorldWarp maintains an online 3D geometric cache built via Gaussian Splatting (3DGS). By explicitly warping historical content into novel views, this cache acts as a structural scaffold, ensuring each new frame respects prior geometry. However, static warping inevitably leaves holes and artifacts due to occlusions. We address this using a Spatio-Temporal Diffusion (ST-Diff) model designed for a "fill-and-revise" objective. Our key innovation is a spatio-temporal varying noise schedule: blank regions receive full noise to trigger generation, while warped regions receive partial noise to enable refinement. By dynamically updating the 3D cache at every step, WorldWarp maintains consistency across video chunks. Consequently, it achieves state-of-the-art fidelity by ensuring that 3D logic guides structure while diffusion logic perfects texture. Project page: https://hyokong.github.io/worldwarp-page/{https://hyokong.github.io/worldwarp-page/}.
Token-Level Guided Discrete Diffusion for Membrane Protein Design
Reparameterized diffusion models (RDMs) have recently matched autoregressive methods in protein generation, motivating their use for challenging tasks such as designing membrane proteins, which possess interleaved soluble and transmembrane (TM) regions. We introduce the Membrane Diffusion Language Model (MemDLM), a fine-tuned RDM-based protein language model that enables controllable membrane protein sequence design. MemDLM-generated sequences recapitulate the TM residue density and structural features of natural membrane proteins, achieving comparable biological plausibility and outperforming state-of-the-art diffusion baselines in motif scaffolding tasks by producing lower perplexity, higher BLOSUM-62 scores, and improved pLDDT confidence. To enhance controllability, we develop Per-Token Guidance (PET), a novel classifier-guided sampling strategy that selectively solubilizes residues while preserving conserved TM domains, yielding sequences with reduced TM density but intact functional cores. Importantly, MemDLM designs validated in TOXCAT beta-lactamase growth assays demonstrate successful TM insertion, distinguishing high-quality generated sequences from poor ones. Together, our framework establishes the first experimentally-validated diffusion-based model for rational membrane protein generation, integrating de novo design, motif scaffolding, and targeted property optimization.
IgCraft: A versatile sequence generation framework for antibody discovery and engineering
Designing antibody sequences to better resemble those observed in natural human repertoires is a key challenge in biologics development. We introduce IgCraft: a multi-purpose model for paired human antibody sequence generation, built on Bayesian Flow Networks. IgCraft presents one of the first unified generative modeling frameworks capable of addressing multiple antibody sequence design tasks with a single model, including unconditional sampling, sequence inpainting, inverse folding, and CDR motif scaffolding. Our approach achieves competitive results across the full spectrum of these tasks while constraining generation to the space of human antibody sequences, exhibiting particular strengths in CDR motif scaffolding (grafting) where we achieve state-of-the-art performance in terms of humanness and preservation of structural properties. By integrating previously separate tasks into a single scalable generative model, IgCraft provides a versatile platform for sampling human antibody sequences under a variety of contexts relevant to antibody discovery and engineering. Model code and weights are publicly available at github.com/mgreenig/IgCraft.
MotifBench: A standardized protein design benchmark for motif-scaffolding problems
The motif-scaffolding problem is a central task in computational protein design: Given the coordinates of atoms in a geometry chosen to confer a desired biochemical function (a motif), the task is to identify diverse protein structures (scaffolds) that include the motif and maintain its geometry. Significant recent progress on motif-scaffolding has been made due to computational evaluation with reliable protein structure prediction and fixed-backbone sequence design methods. However, significant variability in evaluation strategies across publications has hindered comparability of results, challenged reproducibility, and impeded robust progress. In response we introduce MotifBench, comprising (1) a precisely specified pipeline and evaluation metrics, (2) a collection of 30 benchmark problems, and (3) an implementation of this benchmark and leaderboard at github.com/blt2114/MotifBench. The MotifBench test cases are more difficult compared to earlier benchmarks, and include protein design problems for which solutions are known but on which, to the best of our knowledge, state-of-the-art methods fail to identify any solution.
BridgeNet: A Dataset of Graph-based Bridge Structural Models for Machine Learning Applications
Machine learning (ML) is increasingly used in structural engineering and design, yet its broader adoption is hampered by the lack of openly accessible datasets of structural systems. We introduce BridgeNet, a publicly available graph-based dataset of 20,000 form-found bridge structures aimed at enabling Graph ML and multi-modal learning in the context of conceptual structural design. Each datapoint consists of (i) a pin-jointed equilibrium wireframe model generated with the Combinatorial Equilibrium Modeling (CEM) form-finding method, (ii) a volumetric 3D mesh obtained through force-informed materialization, and (iii) rendered images from two canonical camera angles. The resulting dataset is modality-rich and application-agnostic, supporting tasks such as CEM-specific edge classification and parameter inference, surrogate modeling of form-finding, cross-modal reconstruction between graphs, meshes and images, and generative structural design. BridgeNet addresses a key bottleneck in data-driven applications for structural engineering and design by providing a dataset that facilitates the development of new ML-based approaches for equilibrium bridge structures.
Integrating Large Language Models for Automated Structural Analysis
Automated analysis for engineering structures offers considerable potential for boosting efficiency by minimizing repetitive tasks. Although AI-driven methods are increasingly common, no systematic framework yet leverages Large Language Models (LLMs) for automatic structural analysis. To address this gap, we propose a novel framework that integrates LLMs with structural analysis software. LLMs serve as the core engine: they parse structural descriptions from text and translate them into executable Python scripts. Moreover, the framework integrates the generative capabilities of LLMs with code-based finite element (FE) tools like OpenSeesPy. It employs domain-specific prompt design and in-context learning strategies to enhance the LLM's problem-solving capabilities and generative stability, enabling fully automated structural analysis from descriptive text to model outputs. In our experiments, we introduce a well-curated small-scale benchmark dataset of 20 structural analysis word problems (SAWPs) with ground-truth solutions and evaluate the performance of different LLMs within our framework in solving these SAWPs. The role of system instructions, crafted by structural engineers, is also investigated to understand their impact on LLM-driven structural analysis. Additionally, the generative stability of our framework is examined. Through multiple validation experiments on the benchmark, our results demonstrate that the proposed framework can substantially increase the level of automation in solving SAWPs compared to traditional methods. Quantitatively, the framework, built on GPT-4o, achieved 100% accuracy, surpassing GPT-4 (85%), Gemini 1.5 Pro (80%), and Llama-3.3 (30%) on the test examples. Furthermore, integrating domain-specific instructions enhanced performance by 30% on problems with asymmetrical structural configurations.
Optimize Any Topology: A Foundation Model for Shape- and Resolution-Free Structural Topology Optimization
Structural topology optimization (TO) is central to engineering design but remains computationally intensive due to complex physics and hard constraints. Existing deep-learning methods are limited to fixed square grids, a few hand-coded boundary conditions, and post-hoc optimization, preventing general deployment. We introduce Optimize Any Topology (OAT), a foundation-model framework that directly predicts minimum-compliance layouts for arbitrary aspect ratios, resolutions, volume fractions, loads, and fixtures. OAT combines a resolution- and shape-agnostic autoencoder with an implicit neural-field decoder and a conditional latent-diffusion model trained on OpenTO, a new corpus of 2.2 million optimized structures covering 2 million unique boundary-condition configurations. On four public benchmarks and two challenging unseen tests, OAT lowers mean compliance up to 90% relative to the best prior models and delivers sub-1 second inference on a single GPU across resolutions from 64 x 64 to 256 x 256 and aspect ratios as high as 10:1. These results establish OAT as a general, fast, and resolution-free framework for physics-aware topology optimization and provide a large-scale dataset to spur further research in generative modeling for inverse design. Code & data can be found at https://github.com/ahnobari/OptimizeAnyTopology.
PharMolixFM: All-Atom Foundation Models for Molecular Modeling and Generation
Structural biology relies on accurate three-dimensional biomolecular structures to advance our understanding of biological functions, disease mechanisms, and therapeutics. While recent advances in deep learning have enabled the development of all-atom foundation models for molecular modeling and generation, existing approaches face challenges in generalization due to the multi-modal nature of atomic data and the lack of comprehensive analysis of training and sampling strategies. To address these limitations, we propose PharMolixFM, a unified framework for constructing all-atom foundation models based on multi-modal generative techniques. Our framework includes three variants using state-of-the-art multi-modal generative models. By formulating molecular tasks as a generalized denoising process with task-specific priors, PharMolixFM achieves robust performance across various structural biology applications. Experimental results demonstrate that PharMolixFM-Diff achieves competitive prediction accuracy in protein-small-molecule docking (83.9% vs. 90.2% RMSD < 2Å, given pocket) with significantly improved inference speed. Moreover, we explore the empirical inference scaling law by introducing more sampling repeats or steps. Our code and model are available at https://github.com/PharMolix/OpenBioMed.
DepGraph: Towards Any Structural Pruning
Structural pruning enables model acceleration by removing structurally-grouped parameters from neural networks. However, the parameter-grouping patterns vary widely across different models, making architecture-specific pruners, which rely on manually-designed grouping schemes, non-generalizable to new architectures. In this work, we study a highly-challenging yet barely-explored task, any structural pruning, to tackle general structural pruning of arbitrary architecture like CNNs, RNNs, GNNs and Transformers. The most prominent obstacle towards this goal lies in the structural coupling, which not only forces different layers to be pruned simultaneously, but also expects all removed parameters to be consistently unimportant, thereby avoiding structural issues and significant performance degradation after pruning. To address this problem, we propose a general and {fully automatic} method, Dependency Graph (DepGraph), to explicitly model the dependency between layers and comprehensively group coupled parameters for pruning. In this work, we extensively evaluate our method on several architectures and tasks, including ResNe(X)t, DenseNet, MobileNet and Vision transformer for images, GAT for graph, DGCNN for 3D point cloud, alongside LSTM for language, and demonstrate that, even with a simple norm-based criterion, the proposed method consistently yields gratifying performances.
FFF: Fragments-Guided Flexible Fitting for Building Complete Protein Structures
Cryo-electron microscopy (cryo-EM) is a technique for reconstructing the 3-dimensional (3D) structure of biomolecules (especially large protein complexes and molecular assemblies). As the resolution increases to the near-atomic scale, building protein structures de novo from cryo-EM maps becomes possible. Recently, recognition-based de novo building methods have shown the potential to streamline this process. However, it cannot build a complete structure due to the low signal-to-noise ratio (SNR) problem. At the same time, AlphaFold has led to a great breakthrough in predicting protein structures. This has inspired us to combine fragment recognition and structure prediction methods to build a complete structure. In this paper, we propose a new method named FFF that bridges protein structure prediction and protein structure recognition with flexible fitting. First, a multi-level recognition network is used to capture various structural features from the input 3D cryo-EM map. Next, protein structural fragments are generated using pseudo peptide vectors and a protein sequence alignment method based on these extracted features. Finally, a complete structural model is constructed using the predicted protein fragments via flexible fitting. Based on our benchmark tests, FFF outperforms the baseline methods for building complete protein structures.
MetaFold: Language-Guided Multi-Category Garment Folding Framework via Trajectory Generation and Foundation Model
Garment folding is a common yet challenging task in robotic manipulation. The deformability of garments leads to a vast state space and complex dynamics, which complicates precise and fine-grained manipulation. Previous approaches often rely on predefined key points or demonstrations, limiting their generalization across diverse garment categories. This paper presents a framework, MetaFold, that disentangles task planning from action prediction, learning each independently to enhance model generalization. It employs language-guided point cloud trajectory generation for task planning and a low-level foundation model for action prediction. This structure facilitates multi-category learning, enabling the model to adapt flexibly to various user instructions and folding tasks. Experimental results demonstrate the superiority of our proposed framework. Supplementary materials are available on our website: https://meta-fold.github.io/.
Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data?
Despite the power of Large Language Models (LLMs) like GPT-4, they still struggle with tasks that require generating complex, structured outputs. In this study, we assess the capability of Current LLMs in generating complex structured data and propose a structure-aware fine-tuning approach as a solution to improve this ability. To perform a comprehensive evaluation, we propose Struc-Bench, include five representative LLMs (i.e., GPT-NeoX 20B, GPT-3.5, GPT-4, and Vicuna) and evaluate them on our carefully constructed datasets spanning raw text, HTML, and LaTeX tables. Based on our analysis of current model performance, we identify specific common formatting errors and areas of potential improvement. To address complex formatting requirements, we utilize FormatCoT (Chain-of-Thought) to generate format instructions from target outputs. Our experiments show that our structure-aware fine-tuning method, when applied to LLaMA-7B, significantly improves adherence to natural language constraints, outperforming other evaluated LLMs. Based on these results, we present an ability map of model capabilities from six dimensions (i.e., coverage, formatting, reasoning, comprehension, pragmatics, and hallucination). This map highlights the weaknesses of LLMs in handling complex structured outputs and suggests promising directions for future work. Our code and models can be found at https://github.com/gersteinlab/Struc-Bench.
CrossSDF: 3D Reconstruction of Thin Structures From Cross-Sections
Reconstructing complex structures from planar cross-sections is a challenging problem, with wide-reaching applications in medical imaging, manufacturing, and topography. Out-of-the-box point cloud reconstruction methods can often fail due to the data sparsity between slicing planes, while current bespoke methods struggle to reconstruct thin geometric structures and preserve topological continuity. This is important for medical applications where thin vessel structures are present in CT and MRI scans. This paper introduces CrossSDF, a novel approach for extracting a 3D signed distance field from 2D signed distances generated from planar contours. Our approach makes the training of neural SDFs contour-aware by using losses designed for the case where geometry is known within 2D slices. Our results demonstrate a significant improvement over existing methods, effectively reconstructing thin structures and producing accurate 3D models without the interpolation artifacts or over-smoothing of prior approaches.
ShaRF: Shape-conditioned Radiance Fields from a Single View
We present a method for estimating neural scenes representations of objects given only a single image. The core of our method is the estimation of a geometric scaffold for the object and its use as a guide for the reconstruction of the underlying radiance field. Our formulation is based on a generative process that first maps a latent code to a voxelized shape, and then renders it to an image, with the object appearance being controlled by a second latent code. During inference, we optimize both the latent codes and the networks to fit a test image of a new object. The explicit disentanglement of shape and appearance allows our model to be fine-tuned given a single image. We can then render new views in a geometrically consistent manner and they represent faithfully the input object. Additionally, our method is able to generalize to images outside of the training domain (more realistic renderings and even real photographs). Finally, the inferred geometric scaffold is itself an accurate estimate of the object's 3D shape. We demonstrate in several experiments the effectiveness of our approach in both synthetic and real images.
Educating LLMs like Human Students: Structure-aware Injection of Domain Knowledge
This paper presents a pioneering methodology, termed StructTuning, to efficiently transform foundation Large Language Models (LLMs) into domain specialists. It significantly minimizes the training corpus requirement to a mere 0.3% while achieving an impressive 50% of traditional knowledge injection performance. Our method is inspired by the educational processes for human students, particularly how structured domain knowledge from textbooks is absorbed and then applied to tackle real-world challenges through specific exercises. Based on this, we propose a novel two-stage knowledge injection strategy: Structure-aware Continual Pre-Training (SCPT) and Structure-aware Supervised Fine-Tuning (SSFT). In the SCPT phase, we organize the training data into an auto-generated taxonomy of domain knowledge, enabling LLMs to effectively memorize textual segments linked to specific expertise within the taxonomy's architecture. Subsequently, in the SSFT phase, we explicitly prompt models to reveal the underlying knowledge structure in their outputs, leveraging this structured domain insight to address practical problems adeptly. Our ultimate method has undergone extensive evaluations across model architectures and scales, using closed-book question-answering tasks on LongBench and MMedBench datasets. Remarkably, our method matches 50% of the improvement displayed by the state-of-the-art MMedLM2 on MMedBench, but with only 0.3% quantity of the training corpus. This breakthrough showcases the potential to scale up our StructTuning for stronger domain-specific LLMs. Code will be made public soon.
Energy-conserving equivariant GNN for elasticity of lattice architected metamaterials
Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.
Defining structural gradient hardening through Type II back stress for heterostructured materials
The recently proposed term "heterostructured (HS) materials" serves as an umbrella classification encompassing a wide range of materials that hold great promise for enhanced mechanical properties. Most HS materials exhibit back-stress strengthening, as is typical for all plastically non-homogeneous materials. To better embody the distinctiveness of materials crafted via innovative heterostructuring, here we introduce the concept of "structural gradient hardening" (SGH), which captures an essential feature of HS materials and complements traditional strengthening mechanisms. SGH refers to the extra strengthening that arises from a characteristic gradient structure introduced by heterostructuring, beyond what is predicted by the rule of mixtures. This distinction is useful, as the overall back stress can in fact be partitioned into Type I and Type II components, with the latter specifically quantifying the extra hardening originating from the structural and strain gradients established by heterostructuring, as articulated in this Viewpoint article.
Revealing diatom-inspired materials multifunctionality
Diatoms have been described as nanometer-born lithographers because of their ability to create sophisticated three-dimensional amorphous silica exoskeletons. The hierarchical architecture of these structures provides diatoms with mechanical protection and the ability to filter, float, and manipulate light. Therefore, they emerge as an extraordinary model of multifunctional materials from which to draw inspiration. In this paper, we use numerical simulations, analytical models, and experimental tests to unveil the structural and fluid dynamic efficiency of the Coscinodiscus species diatom. Then we propose a novel 3D printable multifunctional biomimetic material for applications such as porous filters, heat exchangers, drug delivery systems, lightweight structures, and robotics. Our results demonstrate the role of Nature as a material designer for efficient and tunable systems and highlight the potential of diatoms for engineering materials innovation. Additionally, the results reported in this paper lay the foundation to extend the structure-property characterization of diatoms.
Neural reparameterization improves structural optimization
Structural optimization is a popular method for designing objects such as bridge trusses, airplane wings, and optical devices. Unfortunately, the quality of solutions depends heavily on how the problem is parameterized. In this paper, we propose using the implicit bias over functions induced by neural networks to improve the parameterization of structural optimization. Rather than directly optimizing densities on a grid, we instead optimize the parameters of a neural network which outputs those densities. This reparameterization leads to different and often better solutions. On a selection of 116 structural optimization tasks, our approach produces the best design 50% more often than the best baseline method.
SE(3) diffusion model with application to protein backbone generation
The design of novel protein structures remains a challenge in protein engineering for applications across biomedicine and chemistry. In this line of work, a diffusion model over rigid bodies in 3D (referred to as frames) has shown success in generating novel, functional protein backbones that have not been observed in nature. However, there exists no principled methodological framework for diffusion on SE(3), the space of orientation preserving rigid motions in R3, that operates on frames and confers the group invariance. We address these shortcomings by developing theoretical foundations of SE(3) invariant diffusion models on multiple frames followed by a novel framework, FrameDiff, for learning the SE(3) equivariant score over multiple frames. We apply FrameDiff on monomer backbone generation and find it can generate designable monomers up to 500 amino acids without relying on a pretrained protein structure prediction network that has been integral to previous methods. We find our samples are capable of generalizing beyond any known protein structure.
