new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Repair-R1: Better Test Before Repair

APR (Automated Program Repair) aims to automatically locate program defects, generate patches and validate the repairs. Existing techniques for APR are often combined with LLMs (Large Language Models), which leverages the code-related knowledge of LLMs to improve repair effectiveness. Current LLM-based APR methods typically utilize test cases only during the inference stage, adopting an iterative approach that performs repair first and validates it through test execution afterward. This conventional paradigm neglects two important aspects: the potential contribution of test cases in the training phase, and the possibility of leveraging testing prior to repair. To address this, we propose Repair-R1, which introduces test cases into the model's training phase and shifts test generation to precede repair. The model is required to first generate discriminative test cases that can distinguish defective behaviors, and then perform repair based on these tests. This enables the model to better locate defects and understand the underlying causes of defects, thereby improving repair effectiveness. We implement Repair-R1 with three different backbone models, using RL (reinforcement learning) to co-optimize test generation and bug repair. Experimental results on four widely adopted benchmarks demonstrate the superiority of Repair-R1. Specially, compared to vanilla models, Repair-R1 improves repair success rate by 2.68\% to 48.29\%, test generation success rate by 16.38\% to 53.28\%, and test coverage by 0.78\% to 53.96\%. We publish the code and weights at https://github.com/Tomsawyerhu/APR-RL and https://huggingface.co/tomhu/Qwen3-4B-RL-5000-step.

  • 3 authors
·
Jul 30, 2025 2

Generating Symbolic World Models via Test-time Scaling of Large Language Models

Solving complex planning problems requires Large Language Models (LLMs) to explicitly model the state transition to avoid rule violations, comply with constraints, and ensure optimality-a task hindered by the inherent ambiguity of natural language. To overcome such ambiguity, Planning Domain Definition Language (PDDL) is leveraged as a planning abstraction that enables precise and formal state descriptions. With PDDL, we can generate a symbolic world model where classic searching algorithms, such as A*, can be seamlessly applied to find optimal plans. However, directly generating PDDL domains with current LLMs remains an open challenge due to the lack of PDDL training data. To address this challenge, we propose to scale up the test-time computation of LLMs to enhance their PDDL reasoning capabilities, thereby enabling the generation of high-quality PDDL domains. Specifically, we introduce a simple yet effective algorithm, which first employs a Best-of-N sampling approach to improve the quality of the initial solution and then refines the solution in a fine-grained manner with verbalized machine learning. Our method outperforms o1-mini by a considerable margin in the generation of PDDL domain, achieving over 50% success rate on two tasks (i.e., generating PDDL domains from natural language description or PDDL problems). This is done without requiring additional training. By taking advantage of PDDL as state abstraction, our method is able to outperform current state-of-the-art methods on almost all competition-level planning tasks.

  • 8 authors
·
Feb 7, 2025 2

FEM-Bench: A Structured Scientific Reasoning Benchmark for Evaluating Code-Generating LLMs

As LLMs advance their reasoning capabilities about the physical world, the absence of rigorous benchmarks for evaluating their ability to generate scientifically valid physical models has become a critical gap. Computational mechanics, which develops and applies mathematical models and numerical methods to predict the behavior of physical systems under forces, deformation, and constraints, provides an ideal foundation for structured scientific reasoning evaluation. Problems follow clear mathematical structure, enforce strict physical and numerical constraints, and support objective verification. The discipline requires constructing explicit models of physical systems and reasoning about geometry, spatial relationships, and material behavior, connecting directly to emerging AI goals in physical reasoning and world modeling. We introduce FEM-Bench, a computational mechanics benchmark designed to evaluate the ability of LLMs to generate correct finite element method (FEM) and related code. FEM-Bench 2025 contains a suite of introductory but nontrivial tasks aligned with material from a first graduate course on computational mechanics. These tasks capture essential numerical and physical modeling challenges while representing only a small fraction of the complexity present in the discipline. Despite their simplicity, state-of-the-art LLMs do not reliably solve all of them. In a five attempt run, the best performing model at function writing, Gemini 3 Pro, completed 30/33 tasks at least once and 26/33 tasks all five times. The best performing model at unit test writing, GPT-5, had an Average Joint Success Rate of 73.8%. Other popular models showed broad performance variation. FEM-Bench establishes a structured foundation for evaluating AI-generated scientific code, and future iterations will incorporate increasingly sophisticated tasks to track progress as models evolve.

  • 4 authors
·
Dec 23, 2025