BGNet: Optimized for Mobile Deployment

Segment images in real-time on device

BGNet or Boundary-Guided Network, is a model designed for camouflaged object detection. It leverages edge semantics to enhance the representation learning process, making it more effective at identifying objects that blend into their surroundings

This model is an implementation of BGNet found here.

This repository provides scripts to run BGNet on Qualcomm® devices. More details on model performance across various devices, can be found here.

WARNING: The model assets are not readily available for download due to licensing restrictions.

Model Details

  • Model Type: Model_use_case.semantic_segmentation
  • Model Stats:
    • Model checkpoint: BGNet
    • Input resolution: 416x416
    • Number of parameters: 77.8M
    • Model size (float): 297 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
BGNet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 117.969 ms 1 - 143 MB NPU --
BGNet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 114.959 ms 2 - 78 MB NPU --
BGNet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 33.59 ms 1 - 218 MB NPU --
BGNet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 38.675 ms 2 - 68 MB NPU --
BGNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 23.009 ms 1 - 23 MB NPU --
BGNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 20.17 ms 2 - 28 MB NPU --
BGNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 18.796 ms 0 - 180 MB NPU --
BGNet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 154.396 ms 1 - 142 MB NPU --
BGNet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 32.303 ms 1 - 79 MB NPU --
BGNet float SA7255P ADP Qualcomm® SA7255P TFLITE 117.969 ms 1 - 143 MB NPU --
BGNet float SA7255P ADP Qualcomm® SA7255P QNN_DLC 114.959 ms 2 - 78 MB NPU --
BGNet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 23.045 ms 1 - 23 MB NPU --
BGNet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 20.194 ms 2 - 28 MB NPU --
BGNet float SA8295P ADP Qualcomm® SA8295P TFLITE 37.507 ms 0 - 110 MB NPU --
BGNet float SA8295P ADP Qualcomm® SA8295P QNN_DLC 33.987 ms 2 - 55 MB NPU --
BGNet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 22.985 ms 0 - 23 MB NPU --
BGNet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 20.31 ms 2 - 28 MB NPU --
BGNet float SA8775P ADP Qualcomm® SA8775P TFLITE 154.396 ms 1 - 142 MB NPU --
BGNet float SA8775P ADP Qualcomm® SA8775P QNN_DLC 32.303 ms 1 - 79 MB NPU --
BGNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 16.668 ms 1 - 227 MB NPU --
BGNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 14.497 ms 2 - 94 MB NPU --
BGNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 13.941 ms 3 - 98 MB NPU --
BGNet float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 12.899 ms 0 - 140 MB NPU --
BGNet float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 11.566 ms 2 - 84 MB NPU --
BGNet float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 11.082 ms 2 - 79 MB NPU --
BGNet float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 11.08 ms 1 - 141 MB NPU --
BGNet float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 8.872 ms 2 - 89 MB NPU --
BGNet float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 9.291 ms 2 - 86 MB NPU --
BGNet float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 20.719 ms 403 - 403 MB NPU --
BGNet float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 19.194 ms 154 - 154 MB NPU --

Installation

Install the package via pip:

# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install pysodmetrics==1.5.1 --no-deps
pip install "qai-hub-models[bgnet]"

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.bgnet.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.bgnet.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.bgnet.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.bgnet import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.bgnet.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.bgnet.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on BGNet's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of BGNet can be found [here](This model's original implementation does not provide a LICENSE.).
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support