Abdu07 commited on
Commit
f174953
·
verified ·
1 Parent(s): cb46cc8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +132 -0
app.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import csv
3
+ import pandas as pd
4
+ import gradio as gr
5
+ import plotly.express as px
6
+
7
+ DEFAULT_CSV = os.environ.get("RESULTS_CSV_PATH", "results.csv")
8
+
9
+ EXPECTED_COLS = [
10
+ "timestamp_iso","run_id","model","prompt_id","category",
11
+ "quality_score","latency_s","energy_wh","tokens","notes"
12
+ ]
13
+
14
+ def _load_df(file: gr.File | None):
15
+ path = DEFAULT_CSV
16
+ if file is not None:
17
+ path = file.name
18
+ if not os.path.exists(path):
19
+ return pd.DataFrame(columns=EXPECTED_COLS)
20
+ df = pd.read_csv(path)
21
+ # ensure expected cols exist
22
+ for c in EXPECTED_COLS:
23
+ if c not in df.columns:
24
+ df[c] = None
25
+ # numeric coercion
26
+ for c in ["quality_score","latency_s","energy_wh","tokens"]:
27
+ df[c] = pd.to_numeric(df[c], errors="coerce")
28
+ return df
29
+
30
+ def _summaries(df: pd.DataFrame):
31
+ if df.empty:
32
+ return df, pd.DataFrame(), pd.DataFrame(), None, None, None, None
33
+
34
+ def q_per_wh(row):
35
+ if pd.notna(row["mean_energy"]) and row["mean_energy"] > 0 and pd.notna(row["mean_quality"]):
36
+ return row["mean_quality"] / row["mean_energy"]
37
+ return None
38
+
39
+ per_model = df.groupby("model", dropna=False).agg(
40
+ n_runs=("run_id","count"),
41
+ mean_quality=("quality_score","mean"),
42
+ median_latency=("latency_s","median"),
43
+ p95_latency=("latency_s", lambda x: x.dropna().quantile(0.95) if len(x.dropna()) else None),
44
+ mean_latency=("latency_s","mean"),
45
+ mean_energy=("energy_wh","mean"),
46
+ mean_tokens=("tokens","mean")
47
+ ).reset_index()
48
+ per_model["quality_per_wh"] = per_model.apply(q_per_wh, axis=1)
49
+
50
+ per_model_cat = df.groupby(["model","category"], dropna=False).agg(
51
+ n_runs=("run_id","count"),
52
+ mean_quality=("quality_score","mean"),
53
+ mean_latency=("latency_s","mean"),
54
+ p95_latency=("latency_s", lambda x: x.dropna().quantile(0.95) if len(x.dropna()) else None),
55
+ mean_energy=("energy_wh","mean")
56
+ ).reset_index()
57
+
58
+ c1 = px.bar(per_model.sort_values("mean_quality", ascending=False),
59
+ x="model", y="mean_quality", title="Mean Quality by Model")
60
+ c2 = px.bar(per_model.sort_values("mean_latency"),
61
+ x="model", y="mean_latency", title="Mean Latency (s) by Model")
62
+ c3 = px.bar(per_model.sort_values("p95_latency"),
63
+ x="model", y="p95_latency", title="P95 Latency (s) by Model")
64
+ c4 = px.bar(per_model.sort_values("quality_per_wh", ascending=False),
65
+ x="model", y="quality_per_wh", title="Quality per Watt-hour (↑ better)")
66
+
67
+ return df, per_model, per_model_cat, c1, c2, c3, c4
68
+
69
+ def _filter(df, model_sel, cat_sel, prompt_sel):
70
+ if df.empty:
71
+ return pd.DataFrame()
72
+ out = df.copy()
73
+ if model_sel and model_sel != "ALL":
74
+ out = out[out["model"] == model_sel]
75
+ if cat_sel and cat_sel != "ALL":
76
+ out = out[out["category"] == cat_sel]
77
+ if prompt_sel and prompt_sel != "ALL":
78
+ out = out[out["prompt_id"] == prompt_sel]
79
+ return out
80
+
81
+ def _choices(df):
82
+ models = ["ALL"] + sorted([m for m in df["model"].dropna().unique().tolist()])
83
+ cats = ["ALL"] + sorted([c for c in df["category"].dropna().unique().tolist()])
84
+ prompts = ["ALL"] + sorted([p for p in df["prompt_id"].dropna().unique().tolist()])
85
+ return models, cats, prompts
86
+
87
+ with gr.Blocks(title="Compare’IA — Benchmark Dashboard") as demo:
88
+ gr.Markdown("## Compare’IA — Benchmark Dashboard\nUpload your CSV or use the default `results.csv` in the Space repo.")
89
+
90
+ with gr.Row():
91
+ csv_file = gr.File(label="Upload results CSV", file_types=[".csv"])
92
+ refresh_btn = gr.Button("Refresh data")
93
+
94
+ raw_df = gr.Dataframe(label="Raw data", interactive=False, wrap=True, height=300)
95
+
96
+ with gr.Row():
97
+ model_dd = gr.Dropdown(choices=["ALL"], value="ALL", label="Model")
98
+ cat_dd = gr.Dropdown(choices=["ALL"], value="ALL", label="Category")
99
+ prompt_dd = gr.Dropdown(choices=["ALL"], value="ALL", label="Prompt ID")
100
+ apply_filter = gr.Button("Apply filter")
101
+
102
+ filtered_df = gr.Dataframe(label="Filtered rows", interactive=False, height=250)
103
+
104
+ with gr.Accordion("Aggregates & Charts", open=True):
105
+ per_model_df = gr.Dataframe(label="Per-model summary", interactive=False)
106
+ per_model_cat_df = gr.Dataframe(label="Per-model-per-category", interactive=False)
107
+ chart_quality = gr.Plot(label="Mean Quality by Model")
108
+ chart_mean_lat = gr.Plot(label="Mean Latency by Model")
109
+ chart_p95_lat = gr.Plot(label="P95 Latency by Model")
110
+ chart_q_per_wh = gr.Plot(label="Quality per Wh")
111
+
112
+ def _refresh(file):
113
+ df = _load_df(file)
114
+ models, cats, prompts = _choices(df)
115
+ full_df, pm, pmc, c1, c2, c3, c4 = _summaries(df)
116
+ return (full_df, gr.update(choices=models, value="ALL"),
117
+ gr.update(choices=cats, value="ALL"),
118
+ gr.update(choices=prompts, value="ALL"),
119
+ pm, pmc, c1, c2, c3, c4)
120
+
121
+ refresh_btn.click(_refresh, inputs=csv_file,
122
+ outputs=[raw_df, model_dd, cat_dd, prompt_dd, per_model_df, per_model_cat_df,
123
+ chart_quality, chart_mean_lat, chart_p95_lat, chart_q_per_wh])
124
+
125
+ def _apply(file, model_sel, cat_sel, prompt_sel):
126
+ df = _load_df(file)
127
+ out = _filter(df, model_sel, cat_sel, prompt_sel)
128
+ return out
129
+
130
+ apply_filter.click(_apply, inputs=[csv_file, model_dd, cat_dd, prompt_dd], outputs=[filtered_df])
131
+
132
+ demo.launch()