File size: 5,364 Bytes
f3a733b
9247cd4
beb1467
9247cd4
 
 
 
 
4d4bd5b
beb1467
81ddd16
beb1467
4d4bd5b
 
 
9247cd4
 
 
 
 
 
 
 
 
 
 
beb1467
 
 
4d4bd5b
9247cd4
4d4bd5b
beb1467
 
 
 
 
 
 
 
 
9247cd4
 
 
 
beb1467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4bd5b
beb1467
 
 
 
4d4bd5b
9247cd4
 
 
 
 
 
4d4bd5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9247cd4
 
 
 
 
 
 
4d4bd5b
9247cd4
 
5060df5
9247cd4
 
 
 
 
 
4d4bd5b
5060df5
9247cd4
 
 
 
 
4d4bd5b
9247cd4
5060df5
9247cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4bd5b
9247cd4
 
 
 
 
 
 
4d4bd5b
9247cd4
 
 
 
 
 
 
 
 
 
4d4bd5b
9247cd4
 
 
 
 
 
4d4bd5b
9247cd4
 
 
 
 
 
 
4d4bd5b
9247cd4
f3a733b
4d4bd5b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import numpy as np
import spaces 
import torch
import random
import time
from PIL import Image
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast, AutoProcessor, pipeline
from huggingface_hub import hf_hub_download
from gradio_client import Client, handle_file
import os
import subprocess

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# Use the 'waffles' environment variable as the access token
hf_token = os.getenv('waffles')

# Ensure the token is loaded correctly
if not hf_token:
    raise ValueError("Hugging Face API token not found. Please set the 'waffles' environment variable.")

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1", token=hf_token).to(device)

@spaces.GPU(duration=60)
def infer(prompt, seed=0, randomize_seed=True, width=640, height=1024, guidance_scale=0.0, num_inference_steps=5, lora_model="AlekseyCalvin/RCA_Agitprop_Manufactory", progress=gr.Progress(track_tqdm=True)):
    global pipe
    
    # Load LoRA if specified
    if lora_model:
        try:
            pipe.load_lora_weights(lora_model)
        except Exception as e:
            return None, seed, f"Failed to load LoRA model: {str(e)}"

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    try:
        image = pipe(
            prompt=prompt, 
            width=width,
            height=height,
            num_inference_steps=num_inference_steps, 
            generator=generator,
            guidance_scale=guidance_scale
        ).images[0]
        
        # Unload LoRA weights after generation
        if lora_model:
            pipe.unload_lora_weights()
        
        return image, prompt, seed, "Image generated successfully."
    except Exception as e:
        return None, seed, f"Error during image generation: {str(e)}"

    
    return image, prompt, seed


examples = [
    "RCA style communist party poster with the words Ready for REVOLUTION? in large black consistent constructivist font alongside a red Soviet hammer and a red Soviet sickle over the background of planet earth, over the North American continent",
]

custom_css = """
#col-container {
    margin: 0 auto;
    max-width: 520px; 
}
.input-group, .output-group {
    border: 1px solid #eb3109;
    border-radius: 10px;
    padding: 20px;
    margin-bottom: 20px;
    background-color: #f9f9f9;
}
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="red", secondary_hue="gray")) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# RCA Agitprop Manufactory: pre-phrase prompts with 'RCA style' to activate custom model """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=2,
                placeholder="RCA style communist poster of ",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=True):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=640,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=5,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [output_image, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
        outputs = [output_image, seed]
    )

demo.launch(debug=True)