File size: 33,738 Bytes
c14e744 3680138 c14e744 c6a3c71 c14e744 de91dc1 c14e744 3680138 ff2cc71 3680138 c14e744 3680138 c14e744 de91dc1 c14e744 de91dc1 c6a3c71 de91dc1 c14e744 de91dc1 c14e744 ff2cc71 c14e744 c6a3c71 c14e744 c6a3c71 c14e744 c6a3c71 c14e744 fb68e9f c14e744 3680138 c14e744 3680138 c14e744 3680138 de91dc1 c14e744 3680138 c14e744 3680138 c14e744 3680138 c14e744 3680138 c14e744 3680138 c14e744 3680138 c14e744 3680138 c14e744 3680138 c14e744 3680138 c14e744 3680138 c14e744 3680138 c14e744 3680138 c14e744 3680138 c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 3680138 c14e744 fb68e9f c6a3c71 fb68e9f c6a3c71 fb68e9f c6a3c71 fb68e9f c14e744 3680138 c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 fb68e9f c14e744 ff2cc71 c14e744 fb68e9f c14e744 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
import tempfile
from typing import List, Tuple, Any
import gradio as gr
import soundfile as sf
import torch
import torch.nn.functional as torch_functional
from gtts import gTTS
from PIL import Image, ImageDraw
from transformers import (
AutoTokenizer,
CLIPModel,
CLIPProcessor,
SamModel,
SamProcessor,
VitsModel,
pipeline,
BlipForQuestionAnswering,
BlipProcessor,
)
MODEL_STORE = {}
def _normalize_gallery_images(gallery_value: Any) -> List[Image.Image]:
if not gallery_value:
return []
normalized_images: List[Image.Image] = []
for item in gallery_value:
if isinstance(item, Image.Image):
normalized_images.append(item)
continue
if isinstance(item, str):
try:
image_object = Image.open(item).convert("RGB")
normalized_images.append(image_object)
except Exception:
continue
continue
if isinstance(item, (list, tuple)) and item:
candidate = item[0]
if isinstance(candidate, Image.Image):
normalized_images.append(candidate)
continue
if isinstance(item, dict):
candidate = item.get("image") or item.get("value")
if isinstance(candidate, Image.Image):
normalized_images.append(candidate)
continue
return normalized_images
def get_audio_pipeline(model_key: str):
if model_key in MODEL_STORE:
return MODEL_STORE[model_key]
if model_key == "whisper":
audio_pipeline = pipeline(
task="automatic-speech-recognition",
model="distil-whisper/distil-small.en",
)
elif model_key == "wav2vec2":
audio_pipeline = pipeline(
task="automatic-speech-recognition",
model="openai/whisper-small",
)
elif model_key == "audio_classifier":
audio_pipeline = pipeline(
task="audio-classification",
model="MIT/ast-finetuned-audioset-10-10-0.4593",
)
elif model_key == "emotion_classifier":
audio_pipeline = pipeline(
task="audio-classification",
model="superb/hubert-large-superb-er",
)
else:
raise ValueError(f"Неизвестный тип аудио модели: {model_key}")
MODEL_STORE[model_key] = audio_pipeline
return audio_pipeline
def get_zero_shot_audio_pipeline():
if "audio_zero_shot_clap" not in MODEL_STORE:
zero_shot_pipeline = pipeline(
task="zero-shot-audio-classification",
model="laion/clap-htsat-unfused",
)
MODEL_STORE["audio_zero_shot_clap"] = zero_shot_pipeline
return MODEL_STORE["audio_zero_shot_clap"]
def get_blip_vqa_components() -> Tuple[BlipForQuestionAnswering, BlipProcessor]:
if "blip_vqa_model" not in MODEL_STORE or "blip_vqa_processor" not in MODEL_STORE:
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
blip_model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
MODEL_STORE["blip_vqa_model"] = blip_model
MODEL_STORE["blip_vqa_processor"] = blip_processor
blip_model = MODEL_STORE["blip_vqa_model"]
blip_processor = MODEL_STORE["blip_vqa_processor"]
return blip_model, blip_processor
def get_vision_pipeline(model_key: str):
if model_key in MODEL_STORE:
return MODEL_STORE[model_key]
if model_key == "object_detection_conditional_detr":
vision_pipeline = pipeline(
task="object-detection",
model="microsoft/conditional-detr-resnet-50",
)
elif model_key == "object_detection_yolos_small":
vision_pipeline = pipeline(
task="object-detection",
model="hustvl/yolos-small",
)
elif model_key == "segmentation":
vision_pipeline = pipeline(
task="image-segmentation",
model="nvidia/segformer-b0-finetuned-ade-512-512",
)
elif model_key == "depth_estimation":
vision_pipeline = pipeline(
task="depth-estimation",
model="Intel/dpt-hybrid-midas",
)
elif model_key == "captioning_blip_base":
vision_pipeline = pipeline(
task="image-to-text",
model="Salesforce/blip-image-captioning-base",
)
elif model_key == "captioning_blip_large":
vision_pipeline = pipeline(
task="image-to-text",
model="Salesforce/blip-image-captioning-large",
)
elif model_key == "vqa_blip_base":
vision_pipeline = pipeline(
task="visual-question-answering",
model="Salesforce/blip-vqa-base",
)
elif model_key == "vqa_vilt_b32":
vision_pipeline = pipeline(
task="visual-question-answering",
model="dandelin/vilt-b32-finetuned-vqa",
)
else:
raise ValueError(f"Неизвестный тип визуальной модели: {model_key}")
MODEL_STORE[model_key] = vision_pipeline
return vision_pipeline
def get_clip_components(clip_key: str) -> Tuple[CLIPModel, CLIPProcessor]:
model_store_key_model = f"clip_model_{clip_key}"
model_store_key_processor = f"clip_processor_{clip_key}"
if model_store_key_model not in MODEL_STORE or model_store_key_processor not in MODEL_STORE:
if clip_key == "clip_large_patch14":
clip_name = "openai/clip-vit-large-patch14"
elif clip_key == "clip_base_patch32":
clip_name = "openai/clip-vit-base-patch32"
else:
raise ValueError(f"Неизвестный вариант CLIP модели: {clip_key}")
clip_model = CLIPModel.from_pretrained(clip_name)
clip_processor = CLIPProcessor.from_pretrained(clip_name)
MODEL_STORE[model_store_key_model] = clip_model
MODEL_STORE[model_store_key_processor] = clip_processor
clip_model = MODEL_STORE[model_store_key_model]
clip_processor = MODEL_STORE[model_store_key_processor]
return clip_model, clip_processor
def get_silero_tts_model():
if "silero_tts_model" not in MODEL_STORE:
silero_model, _ = torch.hub.load(
repo_or_dir="snakers4/silero-models",
model="silero_tts",
language="ru",
speaker="ru_v3",
)
MODEL_STORE["silero_tts_model"] = silero_model
return MODEL_STORE["silero_tts_model"]
def get_mms_tts_components():
if "mms_tts_pipeline" not in MODEL_STORE:
tts_pipeline = pipeline(
task="text-to-speech",
model="facebook/mms-tts-rus",
)
MODEL_STORE["mms_tts_pipeline"] = tts_pipeline
return MODEL_STORE["mms_tts_pipeline"]
def get_sam_components() -> Tuple[SamModel, SamProcessor]:
if "sam_model" not in MODEL_STORE or "sam_processor" not in MODEL_STORE:
sam_model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-77")
sam_processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-77")
MODEL_STORE["sam_model"] = sam_model
MODEL_STORE["sam_processor"] = sam_processor
sam_model = MODEL_STORE["sam_model"]
sam_processor = MODEL_STORE["sam_processor"]
return sam_model, sam_processor
def classify_audio_file(audio_path: str, model_key: str) -> str:
audio_classifier = get_audio_pipeline(model_key)
prediction_list = audio_classifier(audio_path)
result_lines = ["Топ-5 предсказаний:"]
for prediction_index, prediction_item in enumerate(prediction_list[:5], start=1):
label_value = prediction_item["label"]
score_value = prediction_item["score"]
result_lines.append(
f"{prediction_index}. {label_value}: {score_value:.4f}"
)
return "\n".join(result_lines)
def classify_audio_zero_shot_clap(audio_path: str, label_texts: str) -> str:
clap_pipeline = get_zero_shot_audio_pipeline()
label_list = [
label_item.strip()
for label_item in label_texts.split(",")
if label_item.strip()
]
if not label_list:
return "Не задано ни одной текстовой метки для zero-shot классификации."
prediction_list = clap_pipeline(
audio_path,
candidate_labels=label_list,
)
result_lines = ["Zero-Shot Audio Classification (CLAP):"]
for prediction_index, prediction_item in enumerate(prediction_list, start=1):
label_value = prediction_item["label"]
score_value = prediction_item["score"]
result_lines.append(
f"{prediction_index}. {label_value}: {score_value:.4f}"
)
return "\n".join(result_lines)
def recognize_speech(audio_path: str, model_key: str) -> str:
speech_pipeline = get_audio_pipeline(model_key)
prediction_result = speech_pipeline(audio_path)
return prediction_result["text"]
def synthesize_speech(text_value: str, model_key: str):
if model_key == "Google TTS":
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as file_object:
text_to_speech_engine = gTTS(text=text_value, lang="ru")
text_to_speech_engine.save(file_object.name)
return file_object.name
elif model_key == "mms":
model = VitsModel.from_pretrained("facebook/mms-tts-rus")
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus")
inputs = tokenizer(text_value, return_tensors="pt")
with torch.no_grad():
output = model(**inputs).waveform
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
sf.write(f.name, output.numpy().squeeze(), model.config.sampling_rate)
return f.name
raise ValueError(f"Неизвестная модель: {model_key}")
def detect_objects_on_image(image_object, model_key: str):
detector_pipeline = get_vision_pipeline(model_key)
detection_results = detector_pipeline(image_object)
drawer_object = ImageDraw.Draw(image_object)
for detection_item in detection_results:
box_data = detection_item["box"]
label_value = detection_item["label"]
score_value = detection_item["score"]
drawer_object.rectangle(
[
box_data["xmin"],
box_data["ymin"],
box_data["xmax"],
box_data["ymax"],
],
outline="red",
width=3,
)
drawer_object.text(
(box_data["xmin"], box_data["ymin"]),
f"{label_value}: {score_value:.2f}",
fill="red",
)
return image_object
def segment_image(image_object):
segmentation_pipeline = get_vision_pipeline("segmentation")
segmentation_results = segmentation_pipeline(image_object)
return segmentation_results[0]["mask"]
def estimate_image_depth(image_object):
depth_pipeline = get_vision_pipeline("depth_estimation")
depth_output = depth_pipeline(image_object)
predicted_depth_tensor = depth_output["predicted_depth"]
if predicted_depth_tensor.ndim == 3:
predicted_depth_tensor = predicted_depth_tensor.unsqueeze(1)
elif predicted_depth_tensor.ndim == 2:
predicted_depth_tensor = predicted_depth_tensor.unsqueeze(0).unsqueeze(0)
else:
raise ValueError(
f"Неожиданная размерность predicted_depth: {predicted_depth_tensor.shape}"
)
resized_depth_tensor = torch_functional.interpolate(
predicted_depth_tensor,
size=image_object.size[::-1],
mode="bicubic",
align_corners=False,
)
depth_array = resized_depth_tensor.squeeze().cpu().numpy()
max_value = float(depth_array.max())
if max_value <= 0.0:
return Image.new("L", image_object.size, color=0)
normalized_depth_array = (depth_array * 255.0 / max_value).astype("uint8")
depth_image = Image.fromarray(normalized_depth_array, mode="L")
return depth_image
def generate_image_caption(image_object, model_key: str) -> str:
caption_pipeline = get_vision_pipeline(model_key)
caption_result = caption_pipeline(image_object)
return caption_result[0]["generated_text"]
def answer_visual_question(image_object, question_text: str, model_key: str) -> str:
if image_object is None:
return "Пожалуйста, сначала загрузите изображение."
if not question_text.strip():
return "Пожалуйста, введите вопрос об изображении."
if model_key == "vqa_blip_base":
blip_model, blip_processor = get_blip_vqa_components()
inputs = blip_processor(
images=image_object,
text=question_text,
return_tensors="pt",
)
with torch.no_grad():
output_ids = blip_model.generate(**inputs)
decoded_answers = blip_processor.batch_decode(
output_ids,
skip_special_tokens=True,
)
answer_text = decoded_answers[0] if decoded_answers else ""
return answer_text or "Модель не смогла сгенерировать ответ."
vqa_pipeline = get_vision_pipeline(model_key)
vqa_result = vqa_pipeline(
image=image_object,
question=question_text,
)
top_item = vqa_result[0]
answer_text = top_item["answer"]
confidence_value = top_item["score"]
return f"{answer_text} (confidence: {confidence_value:.3f})"
def perform_zero_shot_classification(
image_object,
class_texts: str,
clip_key: str,
) -> str:
clip_model, clip_processor = get_clip_components(clip_key)
class_list = [
class_name.strip()
for class_name in class_texts.split(",")
if class_name.strip()
]
if not class_list:
return "Не задано ни одного класса для классификации."
input_batch = clip_processor(
text=class_list,
images=image_object,
return_tensors="pt",
padding=True,
)
with torch.no_grad():
clip_outputs = clip_model(**input_batch)
logits_per_image = clip_outputs.logits_per_image
probability_tensor = logits_per_image.softmax(dim=1)
result_lines = ["Zero-Shot Classification Results:"]
for class_index, class_name in enumerate(class_list):
probability_value = probability_tensor[0][class_index].item()
result_lines.append(f"{class_name}: {probability_value:.4f}")
return "\n".join(result_lines)
def retrieve_best_image(
gallery_value: Any,
query_text: str,
clip_key: str,
) -> Tuple[str, Image.Image | None]:
image_list = _normalize_gallery_images(gallery_value)
if not image_list or not query_text.strip():
return "Пожалуйста, загрузите изображения и введите запрос", None
clip_model, clip_processor = get_clip_components(clip_key)
image_inputs = clip_processor(
images=image_list,
return_tensors="pt",
padding=True,
)
with torch.no_grad():
image_features = clip_model.get_image_features(**image_inputs)
image_features = image_features / image_features.norm(
dim=-1,
keepdim=True,
)
text_inputs = clip_processor(
text=[query_text],
return_tensors="pt",
padding=True,
)
with torch.no_grad():
text_features = clip_model.get_text_features(**text_inputs)
text_features = text_features / text_features.norm(
dim=-1,
keepdim=True,
)
similarity_tensor = image_features @ text_features.T
best_index_tensor = similarity_tensor.argmax()
best_index_value = best_index_tensor.item()
best_score_value = similarity_tensor[best_index_value].item()
description_text = (
f"Лучшее изображение: #{best_index_value + 1} "
f"(схожесть: {best_score_value:.4f})"
)
return description_text, image_list[best_index_value]
def segment_image_with_sam_points(
image_object,
point_coordinates_list: List[List[int]],
) -> Image.Image:
if image_object is None:
raise ValueError("Изображение не передано в segment_image_with_sam_points")
if not point_coordinates_list:
return Image.new("L", image_object.size, color=0)
sam_model, sam_processor = get_sam_components()
batched_points: List[List[List[int]]] = [point_coordinates_list]
batched_labels: List[List[int]] = [[1 for _ in point_coordinates_list]]
sam_inputs = sam_processor(
image=image_object,
input_points=batched_points,
input_labels=batched_labels,
return_tensors="pt",
)
with torch.no_grad():
sam_outputs = sam_model(**sam_inputs, multimask_output=True)
processed_masks_list = sam_processor.image_processor.post_process_masks(
sam_outputs.pred_masks.squeeze(1).cpu(),
sam_inputs["original_sizes"].cpu(),
sam_inputs["reshaped_input_sizes"].cpu(),
)
batch_masks_tensor = processed_masks_list[0]
if batch_masks_tensor.ndim != 3 or batch_masks_tensor.shape[0] == 0:
return Image.new("L", image_object.size, color=0)
first_mask_tensor = batch_masks_tensor[0]
mask_array = first_mask_tensor.numpy()
binary_mask_array = (mask_array > 0.5).astype("uint8") * 255
mask_image = Image.fromarray(binary_mask_array, mode="L")
return mask_image
def segment_image_with_sam_points_ui(image_object, coordinates_text: str) -> Image.Image:
if image_object is None:
return None
coordinates_text_clean = coordinates_text.strip()
if not coordinates_text_clean:
return Image.new("L", image_object.size, color=0)
point_coordinates_list: List[List[int]] = []
for raw_pair in coordinates_text_clean.replace("\n", ";").split(";"):
raw_pair_clean = raw_pair.strip()
if not raw_pair_clean:
continue
parts = raw_pair_clean.split(",")
if len(parts) != 2:
continue
try:
x_value = int(parts[0].strip())
y_value = int(parts[1].strip())
except ValueError:
continue
point_coordinates_list.append([x_value, y_value])
if not point_coordinates_list:
return Image.new("L", image_object.size, color=0)
return segment_image_with_sam_points(image_object, point_coordinates_list)
def parse_point_coordinates_text(coordinates_text: str) -> List[List[int]]:
if not coordinates_text.strip():
return []
point_list: List[List[int]] = []
for raw_pair in coordinates_text.split(";"):
cleaned_pair = raw_pair.strip()
if not cleaned_pair:
continue
coordinate_parts = cleaned_pair.split(",")
if len(coordinate_parts) != 2:
continue
try:
x_value = int(coordinate_parts[0].strip())
y_value = int(coordinate_parts[1].strip())
except ValueError:
continue
point_list.append([x_value, y_value])
return point_list
def build_interface():
with gr.Blocks(title="Multimodal AI Demo", theme=gr.themes.Soft()) as demo_block:
gr.Markdown("# AI модели")
with gr.Tab("Классификация аудио"):
gr.Markdown("## Классификация аудио")
with gr.Row():
audio_input_component = gr.Audio(
label="Загрузите аудиофайл",
type="filepath",
)
audio_model_selector = gr.Dropdown(
choices=["audio_classifier", "emotion_classifier"],
label="Выберите модель",
value="audio_classifier",
info=(
"audio_classifier - общая классификация (курс)"
"emotion_classifier - эмоции в речи "
),
)
audio_classify_button = gr.Button("Применить")
audio_output_component = gr.Textbox(
label="Результаты классификации",
lines=10,
)
audio_classify_button.click(
fn=classify_audio_file,
inputs=[audio_input_component, audio_model_selector],
outputs=audio_output_component,
)
with gr.Tab("Zero-Shot аудио"):
gr.Markdown("## Zero-Shot аудио классификатор")
with gr.Row():
clap_audio_input_component = gr.Audio(
label="Загрузите аудиофайл",
type="filepath",
)
clap_label_texts_component = gr.Textbox(
label="Кандидатные метки (через запятую)",
placeholder="лай собаки, шум дождя, музыка, разговор",
lines=2,
)
clap_button = gr.Button("Применить")
clap_output_component = gr.Textbox(
label="Результаты zero-shot классификации",
lines=10,
)
clap_button.click(
fn=classify_audio_zero_shot_clap,
inputs=[clap_audio_input_component, clap_label_texts_component],
outputs=clap_output_component,
)
with gr.Tab("Распознавание речи"):
gr.Markdown("## Распознавание реч")
with gr.Row():
asr_audio_input_component = gr.Audio(
label="Загрузите аудио с речью",
type="filepath",
)
asr_model_selector = gr.Dropdown(
choices=["whisper", "wav2vec2"],
label="Выберите модель",
value="whisper",
info=(
"whisper - distil-whisper/distil-small.en (курс),\n"
"wav2vec2 - openai/whisper-small"
),
)
asr_button = gr.Button("Применить")
asr_output_component = gr.Textbox(
label="Транскрипция",
lines=5,
)
asr_button.click(
fn=recognize_speech,
inputs=[asr_audio_input_component, asr_model_selector],
outputs=asr_output_component,
)
with gr.Tab("Синтез речи"):
gr.Markdown("## Text-to-Speech")
with gr.Row():
tts_text_component = gr.Textbox(
label="Введите текст для синтеза",
placeholder="Введите текст на русском или английском языке...",
lines=3,
)
tts_model_selector = gr.Dropdown(
choices=["mms", "Google TTS"],
label="Выберите модель",
value="mms",
info=(
"facebook/mms-tts-rus\n"
"Google TTS"
),
)
tts_button = gr.Button("Применить")
tts_audio_output_component = gr.Audio(
label="Синтезированная речь",
type="filepath",
)
tts_button.click(
fn=synthesize_speech,
inputs=[tts_text_component, tts_model_selector],
outputs=tts_audio_output_component,
)
with gr.Tab("Детекция объектов"):
gr.Markdown("## Детекция объектов")
with gr.Row():
object_input_image = gr.Image(
label="Загрузите изображение",
type="pil",
)
object_model_selector = gr.Dropdown(
choices=[
"object_detection_conditional_detr",
"object_detection_yolos_small",
],
label="Модель",
value="object_detection_conditional_detr",
info=(
"object_detection_conditional_detr - microsoft/conditional-detr-resnet-50\n"
"object_detection_yolos_small - hustvl/yolos-small"
),
)
object_detect_button = gr.Button("Применить")
object_output_image = gr.Image(
label="Результат",
)
object_detect_button.click(
fn=detect_objects_on_image,
inputs=[object_input_image, object_model_selector],
outputs=object_output_image,
)
with gr.Tab("Сегментация"):
gr.Markdown("## Сегментация")
with gr.Row():
segmentation_input_image = gr.Image(
label="Загрузите изображение",
type="pil",
)
segmentation_button = gr.Button("Применить")
segmentation_output_image = gr.Image(
label="Маска",
)
segmentation_button.click(
fn=segment_image,
inputs=segmentation_input_image,
outputs=segmentation_output_image,
)
with gr.Tab("Глубина"):
gr.Markdown("## Глубина (Depth Estimation)")
with gr.Row():
depth_input_image = gr.Image(
label="Загрузите изображение",
type="pil",
)
depth_button = gr.Button("Применить")
depth_output_image = gr.Image(
label="Глубины",
)
depth_button.click(
fn=estimate_image_depth,
inputs=depth_input_image,
outputs=depth_output_image,
)
with gr.Tab("Описание изображений"):
gr.Markdown("## Описание изображений")
with gr.Row():
caption_input_image = gr.Image(
label="Загрузите изображение",
type="pil",
)
caption_model_selector = gr.Dropdown(
choices=[
"captioning_blip_base",
"captioning_blip_large",
],
label="Модель",
value="captioning_blip_base",
info=(
"captioning_blip_base - Salesforce/blip-image-captioning-base (курс)\n"
"captioning_blip_large - Salesforce/blip-image-captioning-large"
),
)
caption_button = gr.Button("Применить")
caption_output_text = gr.Textbox(
label="Описание изображения",
lines=3,
)
caption_button.click(
fn=generate_image_caption,
inputs=[caption_input_image, caption_model_selector],
outputs=caption_output_text,
)
with gr.Tab("Визуальные вопросы"):
gr.Markdown("## Visual Question Answering")
with gr.Row():
vqa_input_image = gr.Image(
label="Загрузите изображение",
type="pil",
)
vqa_question_text = gr.Textbox(
label="Вопрос",
placeholder="Вопрос",
lines=2,
)
vqa_model_selector = gr.Dropdown(
choices=[
"vqa_blip_base",
"vqa_vilt_b32",
],
label="Модель",
value="vqa_blip_base",
info=(
"vqa_blip_base - Salesforce/blip-vqa-base (курс)\n"
"vqa_vilt_b32 - dandelin/vilt-b32-finetuned-vqa"
),
)
vqa_button = gr.Button("Ответить на вопрос")
vqa_output_text = gr.Textbox(
label="Ответ",
lines=3,
)
vqa_button.click(
fn=answer_visual_question,
inputs=[vqa_input_image, vqa_question_text, vqa_model_selector],
outputs=vqa_output_text,
)
with gr.Tab("Zero-Shot классификация"):
gr.Markdown("## Zero-Shot классификация")
with gr.Row():
zero_shot_input_image = gr.Image(
label="Загрузите изображение",
type="pil",
)
zero_shot_classes_text = gr.Textbox(
label="Классы для классификации (через запятую)",
placeholder="человек, машина, дерево, здание, животное",
lines=2,
)
clip_model_selector = gr.Dropdown(
choices=[
"clip_large_patch14",
"clip_base_patch32",
],
label="модель",
value="clip_large_patch14",
info=(
"clip_large_patch14 - openai/clip-vit-large-patch14 (курс)\n"
"clip_base_patch32 - openai/clip-vit-base-patch32"
),
)
zero_shot_button = gr.Button("Применить")
zero_shot_output_text = gr.Textbox(
label="Результаты",
lines=10,
)
zero_shot_button.click(
fn=perform_zero_shot_classification,
inputs=[zero_shot_input_image, zero_shot_classes_text, clip_model_selector],
outputs=zero_shot_output_text,
)
with gr.Tab("Поиск изображений"):
gr.Markdown("## Поиск изображений")
with gr.Row():
retrieval_dir = gr.File(
label="Загрузите папку с изображениями",
file_count="directory",
file_types=["image"],
type="filepath",
)
retrieval_query_text = gr.Textbox(
label="Текстовый запрос",
placeholder="описание того, что вы ищете...",
lines=2,
)
retrieval_clip_selector = gr.Dropdown(
choices=[
"clip_large_patch14",
"clip_base_patch32",
],
label="модель",
value="clip_large_patch14",
info=(
"clip_large_patch14 - openai/clip-vit-large-patch14 (курс)\n"
"clip_base_patch32 - openai/clip-vit-base-patch32 (альтернатива)"
),
)
retrieval_button = gr.Button("Поиск")
retrieval_output_text = gr.Textbox(
label="Результат",
)
retrieval_output_image = gr.Image(
label="Наиболее подходящее изображение",
)
retrieval_button.click(
fn=retrieve_best_image,
inputs=[retrieval_dir, retrieval_query_text, retrieval_clip_selector],
outputs=[retrieval_output_text, retrieval_output_image],
)
gr.Markdown("---")
gr.Markdown("### Задачи:")
gr.Markdown(
"""
- Аудио: классификация, распознавание речи, синтез речи
- Компьютерное зрение: детекция объектов, сегментация, оценка глубины, генерация описаний изображений
- Мультимодальные задачи: вопросы к изображению, zero-shot классификация изображений, поиск по изображениям по текстовому запросу
"""
)
return demo_block
if __name__ == "__main__":
interface_block = build_interface()
interface_block.launch(share=True)
|