import gradio as gr from PIL import Image import torch import torchvision.transforms as transforms import json import os import numpy as np import pandas as pd import random import onnxruntime as ort from transformers import CLIPTokenizer, AutoImageProcessor, AutoModelForImageClassification from safetensors.torch import load_file as safe_load from datetime import datetime # --- Config --- LEADERBOARD_JSON = "leaderboard.json" MODEL_PATH = "model.safetensors" # βœ… updated filename MODEL_BACKBONE = "microsoft/swinv2-small-patch4-window16-256" CLIP_IMAGE_ENCODER_PATH = "clip_image_encoder.onnx" CLIP_TEXT_ENCODER_PATH = "clip_text_encoder.onnx" PROMPT_CSV_PATH = "prompts_0.csv" PROMPT_MATCH_THRESHOLD = 25 # percent # --- No-op for HF Space --- def load_assets(): print("Skipping snapshot_download. Assuming files exist via Git LFS in HF Space.") load_assets() # --- Load leaderboard --- def load_leaderboard(): try: with open(LEADERBOARD_JSON, "r", encoding="utf-8") as f: return json.load(f) except Exception as e: print(f"Failed to load leaderboard: {e}") return {} leaderboard_scores = load_leaderboard() def save_leaderboard(): try: with open(LEADERBOARD_JSON, "w", encoding="utf-8") as f: json.dump(leaderboard_scores, f, ensure_ascii=False) except Exception as e: print(f"Failed to save leaderboard: {e}") # --- Load prompts from CSV --- def load_prompts(): try: df = pd.read_csv(PROMPT_CSV_PATH) if "prompt" in df.columns: return df["prompt"].dropna().tolist() else: print("CSV missing 'prompt' column.") return [] except Exception as e: print(f"Failed to load prompts: {e}") return [] PROMPT_LIST = load_prompts() # --- Load model + processor --- device = torch.device("cuda" if torch.cuda.is_available() else "cpu") processor = AutoImageProcessor.from_pretrained(MODEL_BACKBONE) model = AutoModelForImageClassification.from_pretrained(MODEL_BACKBONE) model.classifier = torch.nn.Linear(model.config.hidden_size, 2) model.load_state_dict(safe_load(MODEL_PATH, device="cpu"), strict=False) model.to(device) model.eval() # --- CLIP prompt matching --- clip_image_sess = ort.InferenceSession(CLIP_IMAGE_ENCODER_PATH, providers=["CPUExecutionProvider"]) clip_text_sess = ort.InferenceSession(CLIP_TEXT_ENCODER_PATH, providers=["CPUExecutionProvider"]) clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def compute_prompt_match(image: Image.Image, prompt: str) -> float: try: img_tensor = transform(image).unsqueeze(0).numpy().astype(np.float32) image_features = clip_image_sess.run(None, {clip_image_sess.get_inputs()[0].name: img_tensor})[0][0] image_features /= np.linalg.norm(image_features) inputs = clip_tokenizer(prompt, return_tensors="np", padding="max_length", truncation=True, max_length=77) input_ids = inputs["input_ids"] attention_mask = inputs["attention_mask"] text_features = clip_text_sess.run(None, { clip_text_sess.get_inputs()[0].name: input_ids, clip_text_sess.get_inputs()[1].name: attention_mask })[0][0] text_features /= np.linalg.norm(text_features) sim = np.dot(image_features, text_features) return round(sim * 100, 2) except Exception as e: print(f"CLIP ONNX match failed: {e}") return 0.0 # --- Main prediction logic --- def detect_with_model(image: Image.Image, prompt: str, username: str, model_name: str): if not username.strip(): return "Please enter your name.", None, [], gr.update(visible=True), gr.update(visible=False), username prompt_score = compute_prompt_match(image, prompt) if prompt_score < PROMPT_MATCH_THRESHOLD and (model_name.lower() != "real" and model_name != ""): message = f"⚠️ Prompt match too low ({round(prompt_score, 2)}%). Please generate an image that better matches the prompt." return message, None, leaderboard, gr.update(visible=True), gr.update(visible=False), username # Run model inference inputs = processor(image, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits pred_class = torch.argmax(logits, dim=-1).item() prediction = "Real" if pred_class == 0 else "Fake" probs = torch.softmax(logits, dim=-1)[0] confidence = round(probs[pred_class].item() * 100, 2) score = 1 if prediction == "Real" else 0 message = f"πŸ” Prediction: {prediction} ({confidence}% confidence)\n🧐 Prompt match: {round(prompt_score, 2)}%" if prediction == "Real" and model_name.lower() != "real": leaderboard_scores[username] = leaderboard_scores.get(username, 0) + score message += "\nπŸŽ‰ Nice! You fooled the AI. +1 point!" else: if model_name.lower() == "real": message += "\n You uploaded a real image, this does not count toward the leaderboard!" else: message += "\nπŸ˜… The AI caught you this time. Try again!" save_leaderboard() sorted_scores = sorted(leaderboard_scores.items(), key=lambda x: x[1], reverse=True) leaderboard_table = [[name, points] for name, points in sorted_scores] image_path = None try: type_image = "real" if (model_name.lower() == "real" or model_name == "") else "fake" image_dir = os.path.join("test", type_image) os.makedirs(image_dir, exist_ok=True) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") image_filename = f"{timestamp}.jpg" image_path = os.path.join(image_dir, image_filename) image.save(image_path) except Exception as e: print(f"Failed to save image locally: {e}") finally: if image_path and os.path.exists(image_path): try: os.remove(image_path) except Exception as cleanup_error: print(f"Failed to delete temporary image: {cleanup_error}") return ( message, image, leaderboard_table, gr.update(visible=False), gr.update(visible=True), username ) def get_random_prompt(): return random.choice(PROMPT_LIST) if PROMPT_LIST else "A synthetic scene with dramatic lighting" def load_initial_state(): sorted_scores = sorted(leaderboard_scores.items(), key=lambda x: x[1], reverse=True) leaderboard_table = [[name, points] for name, points in sorted_scores] return gr.update(value=get_random_prompt()), leaderboard_table # --- Gradio UI --- with gr.Blocks(css=".gr-button {font-size: 16px !important}") as demo: gr.Markdown("## 🌝 OpenFake Arena") gr.Markdown("Welcome to the OpenFake Arena!\n\n**Your mission:** Generate a synthetic image for the prompt, upload it, and try to fool the AI detector into thinking it’s real.\n\n**Rules:**\n\n- You can modify the prompt on your end, but the image needs to have the same content. We verify the content with a CLIP similarity threshold.\n\n- Enter \"real\" in the model used to upload and test a real image. You don't need to follow the prompt for real images. Tips: you can also enter \"real\" if you just want to test the detector! We won't be collecting those images. \n\n- It is important to enter the correct model name for licensing.\n\n- Only synthetic images count toward the leaderboard!\n\n\nNote: The detector is still in early development. The prompt is not used for prediction, only the image.") with gr.Group(visible=True) as input_section: username_input = gr.Textbox(label="Your Name", placeholder="Enter your name", interactive=True) model_input = gr.Textbox(label="Model used, specify the version (e.g., Imagen 3, Dall-e 3, Midjourney 6). Write \"Real\" when uploading a real image.", placeholder="Name of the model used to generate the image", interactive=True) # 🚫 Freeze this block: do not allow edits to the prompt input component's configuration. with gr.Row(): prompt_input = gr.Textbox( interactive=False, label="Prompt to match", placeholder="e.g., ...", value="", lines=2 ) with gr.Row(): image_input = gr.Image(type="pil", label="Upload Synthetic Image") with gr.Row(): submit_btn = gr.Button("Upload") try_again_btn = gr.Button("Try Again", visible=False) with gr.Group(): gr.Markdown("### 🎯 Result") with gr.Row(): prediction_output = gr.Textbox(label="Prediction", interactive=False, elem_id="prediction_box") image_output = gr.Image(label="Submitted Image", show_label=False) with gr.Group(): gr.Markdown("### πŸ† Leaderboard") leaderboard = gr.Dataframe( headers=["Username", "Score"], datatype=["str", "number"], interactive=False, row_count=5, visible=True ) submit_btn.click( fn=detect_with_model, inputs=[image_input, prompt_input, username_input, model_input], outputs=[ prediction_output, image_output, leaderboard, input_section, try_again_btn, username_input ] ) try_again_btn.click( fn=lambda name: ( "", # Clear prediction text None, # Clear uploaded image leaderboard, # Clear leaderboard (temporarily, gets reloaded on next submit) gr.update(visible=True), # Show input section gr.update(visible=False), # Hide "Try Again" button name, # Keep username gr.update(value=get_random_prompt()), # Load new prompt None # Clear image input ), inputs=[username_input], outputs=[ prediction_output, image_output, leaderboard, input_section, try_again_btn, username_input, prompt_input, image_input # ← added output to clear image ] ) demo.load( fn=load_initial_state, outputs=[prompt_input, leaderboard] ) gr.HTML(""" """) if __name__ == "__main__": demo.launch()