Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,14 +7,19 @@ import tempfile
|
|
| 7 |
import time
|
| 8 |
from gradio_client import Client, handle_file
|
| 9 |
|
| 10 |
-
# --- CONFIGURATION:
|
| 11 |
-
# We try
|
| 12 |
-
# 1. CRM (Zhengyi/CRM) - High quality, separate infrastructure
|
| 13 |
-
# 2. TripoSR (Official) - Fast, but currently flaky
|
| 14 |
-
# 3. Shap-E (OpenAI) - Old reliable fallback
|
| 15 |
MODELS = [
|
| 16 |
-
|
| 17 |
-
{"id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
{"id": "hysts/Shap-E", "api": "/image-to-3d", "type": "shape"}
|
| 19 |
]
|
| 20 |
|
|
@@ -23,6 +28,10 @@ def photo_to_sketch(image):
|
|
| 23 |
if image is None: return None
|
| 24 |
if isinstance(image, np.ndarray):
|
| 25 |
image = Image.fromarray(image.astype('uint8'))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
gray = image.convert("L")
|
| 27 |
img_array = np.array(gray)
|
| 28 |
blurred = cv2.GaussianBlur(img_array, (5, 5), 0)
|
|
@@ -37,13 +46,17 @@ def generate_3d_avatar(sketch_image, height, weight, muscle, gender, breast):
|
|
| 37 |
if sketch_image is None:
|
| 38 |
raise gr.Error("Please upload an image first!")
|
| 39 |
|
| 40 |
-
#
|
|
|
|
| 41 |
if isinstance(sketch_image, np.ndarray):
|
| 42 |
sketch_image = Image.fromarray(sketch_image.astype('uint8'))
|
|
|
|
|
|
|
|
|
|
| 43 |
temp_dir = tempfile.gettempdir()
|
| 44 |
sketch_path = os.path.join(temp_dir, f"sketch_{int(time.time())}.png")
|
| 45 |
sketch_image.save(sketch_path)
|
| 46 |
-
print(f"-> Saved input to {sketch_path}")
|
| 47 |
|
| 48 |
last_error = ""
|
| 49 |
|
|
@@ -56,44 +69,51 @@ def generate_3d_avatar(sketch_image, height, weight, muscle, gender, breast):
|
|
| 56 |
|
| 57 |
client = Client(model_id)
|
| 58 |
|
| 59 |
-
if model["type"] == "
|
| 60 |
-
#
|
| 61 |
-
print("-> Sending request (
|
| 62 |
-
# Note: CRM sometimes returns a tuple of (model, video). We handle both.
|
| 63 |
result = client.predict(
|
| 64 |
-
handle_file(sketch_path),
|
| 65 |
api_name=model["api"]
|
| 66 |
)
|
| 67 |
|
| 68 |
-
elif model["type"] == "
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
result = client.predict(
|
| 72 |
-
handle_file(sketch_path), #
|
| 73 |
-
|
| 74 |
-
0.85, # Foreground ratio
|
| 75 |
api_name=model["api"]
|
| 76 |
)
|
| 77 |
|
| 78 |
elif model["type"] == "shape":
|
| 79 |
-
# Shap-E Parameters
|
| 80 |
print("-> Sending request (Shap-E format)...")
|
|
|
|
| 81 |
result = client.predict(
|
| 82 |
-
handle_file(sketch_path),
|
| 83 |
-
"
|
| 84 |
-
0,
|
| 85 |
-
15,
|
| 86 |
-
64,
|
| 87 |
api_name=model["api"]
|
| 88 |
)
|
| 89 |
|
| 90 |
# If we get here, it worked!
|
| 91 |
print(f"-> SUCCESS! Model generated by {model_id}")
|
| 92 |
|
| 93 |
-
# Handle
|
| 94 |
if isinstance(result, (list, tuple)):
|
| 95 |
-
#
|
| 96 |
-
final_model = next((item for item in result if isinstance(item, str) and item.endswith(('.glb', '.obj', '.gltf'))), result[0])
|
| 97 |
else:
|
| 98 |
final_model = result
|
| 99 |
|
|
@@ -104,13 +124,13 @@ def generate_3d_avatar(sketch_image, height, weight, muscle, gender, breast):
|
|
| 104 |
last_error = str(e)
|
| 105 |
continue # Try next model
|
| 106 |
|
| 107 |
-
# If
|
| 108 |
-
raise gr.Error(f"All backup models failed. The Hugging Face inference cloud is
|
| 109 |
|
| 110 |
# =============== UI ===============
|
| 111 |
with gr.Blocks(title="SketchToLife") as demo:
|
| 112 |
-
gr.Markdown("# SketchToLife β
|
| 113 |
-
gr.Markdown("**Status:**
|
| 114 |
|
| 115 |
with gr.Row():
|
| 116 |
with gr.Column():
|
|
@@ -120,7 +140,6 @@ with gr.Blocks(title="SketchToLife") as demo:
|
|
| 120 |
|
| 121 |
with gr.Column():
|
| 122 |
gr.Markdown("### Customize Body")
|
| 123 |
-
# Placeholders for UI consistency
|
| 124 |
h = gr.Dropdown(["short", "average", "tall", "giant"], value="average", label="Height")
|
| 125 |
w = gr.Dropdown(["slim", "average", "curvy", "heavy"], value="average", label="Weight")
|
| 126 |
m = gr.Dropdown(["slim", "fit", "muscular", "bodybuilder"], value="fit", label="Muscle")
|
|
|
|
| 7 |
import time
|
| 8 |
from gradio_client import Client, handle_file
|
| 9 |
|
| 10 |
+
# --- CONFIGURATION: FALLBACK LIST ---
|
| 11 |
+
# We try these 4 distinct spaces. If one is down, we jump to the next.
|
|
|
|
|
|
|
|
|
|
| 12 |
MODELS = [
|
| 13 |
+
# 1. LGM (ashawkey/LGM) - Very fast, usually online.
|
| 14 |
+
{"id": "ashawkey/LGM", "api": "/process", "type": "lgm"},
|
| 15 |
+
|
| 16 |
+
# 2. InstantMesh (TencentARC) - High quality, try again.
|
| 17 |
+
{"id": "TencentARC/InstantMesh", "api": "/generate", "type": "instantmesh"},
|
| 18 |
+
|
| 19 |
+
# 3. Zero123++ (sudo-ai) - Good alternative architecture.
|
| 20 |
+
{"id": "sudo-ai/zero123plus-v1.2", "api": "/generate", "type": "zero123"},
|
| 21 |
+
|
| 22 |
+
# 4. Shap-E (OpenAI) - The reliable backup.
|
| 23 |
{"id": "hysts/Shap-E", "api": "/image-to-3d", "type": "shape"}
|
| 24 |
]
|
| 25 |
|
|
|
|
| 28 |
if image is None: return None
|
| 29 |
if isinstance(image, np.ndarray):
|
| 30 |
image = Image.fromarray(image.astype('uint8'))
|
| 31 |
+
|
| 32 |
+
# Resize to safe dimensions (512x512) to prevent downstream API crashes
|
| 33 |
+
image = image.resize((512, 512))
|
| 34 |
+
|
| 35 |
gray = image.convert("L")
|
| 36 |
img_array = np.array(gray)
|
| 37 |
blurred = cv2.GaussianBlur(img_array, (5, 5), 0)
|
|
|
|
| 46 |
if sketch_image is None:
|
| 47 |
raise gr.Error("Please upload an image first!")
|
| 48 |
|
| 49 |
+
# --- CRITICAL FIX: Sanitize Image ---
|
| 50 |
+
# Many 3D APIs crash if the image is not 256x256 or 512x512 RGB.
|
| 51 |
if isinstance(sketch_image, np.ndarray):
|
| 52 |
sketch_image = Image.fromarray(sketch_image.astype('uint8'))
|
| 53 |
+
|
| 54 |
+
sketch_image = sketch_image.convert("RGB").resize((512, 512))
|
| 55 |
+
|
| 56 |
temp_dir = tempfile.gettempdir()
|
| 57 |
sketch_path = os.path.join(temp_dir, f"sketch_{int(time.time())}.png")
|
| 58 |
sketch_image.save(sketch_path)
|
| 59 |
+
print(f"-> Saved clean input to {sketch_path}")
|
| 60 |
|
| 61 |
last_error = ""
|
| 62 |
|
|
|
|
| 69 |
|
| 70 |
client = Client(model_id)
|
| 71 |
|
| 72 |
+
if model["type"] == "lgm":
|
| 73 |
+
# LGM Parameters: [Image, Scale, Steps, Seed]
|
| 74 |
+
print("-> Sending request (LGM format)...")
|
|
|
|
| 75 |
result = client.predict(
|
| 76 |
+
handle_file(sketch_path),
|
| 77 |
api_name=model["api"]
|
| 78 |
)
|
| 79 |
|
| 80 |
+
elif model["type"] == "instantmesh":
|
| 81 |
+
print("-> Sending request (InstantMesh format)...")
|
| 82 |
+
result = client.predict(
|
| 83 |
+
handle_file(sketch_path), # Image
|
| 84 |
+
True, # Remove Background
|
| 85 |
+
30, # Steps
|
| 86 |
+
42, # Seed
|
| 87 |
+
api_name=model["api"]
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
elif model["type"] == "zero123":
|
| 91 |
+
print("-> Sending request (Zero123 format)...")
|
| 92 |
result = client.predict(
|
| 93 |
+
handle_file(sketch_path), # Image
|
| 94 |
+
True, # Remove Background
|
|
|
|
| 95 |
api_name=model["api"]
|
| 96 |
)
|
| 97 |
|
| 98 |
elif model["type"] == "shape":
|
|
|
|
| 99 |
print("-> Sending request (Shap-E format)...")
|
| 100 |
+
# Shap-E is strictly: Image, Prompt, Seed, Guidance, Steps
|
| 101 |
result = client.predict(
|
| 102 |
+
handle_file(sketch_path),
|
| 103 |
+
"", # Prompt must be string (empty is fine)
|
| 104 |
+
0, # Seed
|
| 105 |
+
15, # Guidance
|
| 106 |
+
64, # Steps
|
| 107 |
api_name=model["api"]
|
| 108 |
)
|
| 109 |
|
| 110 |
# If we get here, it worked!
|
| 111 |
print(f"-> SUCCESS! Model generated by {model_id}")
|
| 112 |
|
| 113 |
+
# Handle return types (list of files vs single path)
|
| 114 |
if isinstance(result, (list, tuple)):
|
| 115 |
+
# Find the first .glb or .obj
|
| 116 |
+
final_model = next((item for item in result if isinstance(item, str) and item.endswith(('.glb', '.obj', '.gltf', '.ply'))), result[0])
|
| 117 |
else:
|
| 118 |
final_model = result
|
| 119 |
|
|
|
|
| 124 |
last_error = str(e)
|
| 125 |
continue # Try next model
|
| 126 |
|
| 127 |
+
# If all fail
|
| 128 |
+
raise gr.Error(f"CRITICAL OUTAGE: All 4 backup models failed. The Hugging Face inference cloud is severely degraded right now. Last Error: {last_error}")
|
| 129 |
|
| 130 |
# =============== UI ===============
|
| 131 |
with gr.Blocks(title="SketchToLife") as demo:
|
| 132 |
+
gr.Markdown("# SketchToLife β Emergency Backup Mode")
|
| 133 |
+
gr.Markdown("**Status:** Trying LGM β InstantMesh β Zero123 β Shap-E")
|
| 134 |
|
| 135 |
with gr.Row():
|
| 136 |
with gr.Column():
|
|
|
|
| 140 |
|
| 141 |
with gr.Column():
|
| 142 |
gr.Markdown("### Customize Body")
|
|
|
|
| 143 |
h = gr.Dropdown(["short", "average", "tall", "giant"], value="average", label="Height")
|
| 144 |
w = gr.Dropdown(["slim", "average", "curvy", "heavy"], value="average", label="Weight")
|
| 145 |
m = gr.Dropdown(["slim", "fit", "muscular", "bodybuilder"], value="fit", label="Muscle")
|