Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,31 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
-
|
| 4 |
|
| 5 |
"""
|
| 6 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 7 |
"""
|
| 8 |
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 9 |
-
client = InferenceClient("vennify/t5-base-grammar-correction")
|
| 10 |
#gr.load("models/vennify/t5-base-grammar-correction").launch()
|
| 11 |
|
| 12 |
# Load the model and tokenizer
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
def respond(
|
|
@@ -22,32 +33,22 @@ def respond(
|
|
| 22 |
history: list[tuple[str, str]],
|
| 23 |
system_message,
|
| 24 |
max_tokens,
|
|
|
|
| 25 |
temperature,
|
| 26 |
top_p,
|
| 27 |
):
|
| 28 |
-
messages = [{"role": "system", "content": system_message}]
|
| 29 |
-
|
| 30 |
-
for val in history:
|
| 31 |
-
if val[0]:
|
| 32 |
-
messages.append({"role": "user", "content": val[0]})
|
| 33 |
-
if val[1]:
|
| 34 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 35 |
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
for message in client.chat_completion(
|
| 41 |
-
messages,
|
| 42 |
-
max_tokens=max_tokens,
|
| 43 |
-
stream=True,
|
| 44 |
-
temperature=temperature,
|
| 45 |
-
top_p=top_p,
|
| 46 |
-
):
|
| 47 |
-
token = message.choices[0].delta.content
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
|
| 52 |
"""
|
| 53 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
@@ -56,9 +57,10 @@ demo = gr.ChatInterface(
|
|
| 56 |
respond,
|
| 57 |
additional_inputs=[
|
| 58 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 59 |
-
gr.Slider(minimum=1,
|
| 60 |
-
gr.Slider(minimum=
|
| 61 |
-
gr.Slider(minimum=0.1, maximum=
|
|
|
|
| 62 |
],
|
| 63 |
)
|
| 64 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 4 |
|
| 5 |
"""
|
| 6 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 7 |
"""
|
| 8 |
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 9 |
+
#client = InferenceClient("vennify/t5-base-grammar-correction")
|
| 10 |
#gr.load("models/vennify/t5-base-grammar-correction").launch()
|
| 11 |
|
| 12 |
# Load the model and tokenizer
|
| 13 |
+
model_name = "vennify/t5-base-grammar-correction"
|
| 14 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 16 |
|
| 17 |
+
def correct_text(text, max_length, num_beams, temperature, top_p):
|
| 18 |
+
inputs = tokenizer.encode(text, return_tensors="pt")
|
| 19 |
+
outputs = model.generate(
|
| 20 |
+
inputs,
|
| 21 |
+
max_length=max_length,
|
| 22 |
+
num_beams=num_beams,
|
| 23 |
+
temperature=temperature,
|
| 24 |
+
top_p=top_p,
|
| 25 |
+
early_stopping=True
|
| 26 |
+
)
|
| 27 |
+
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 28 |
+
return corrected_text
|
| 29 |
|
| 30 |
|
| 31 |
def respond(
|
|
|
|
| 33 |
history: list[tuple[str, str]],
|
| 34 |
system_message,
|
| 35 |
max_tokens,
|
| 36 |
+
num_beams,
|
| 37 |
temperature,
|
| 38 |
top_p,
|
| 39 |
):
|
| 40 |
+
#messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
#for val in history:
|
| 43 |
+
# if val[0]:
|
| 44 |
+
# messages.append({"role": "user", "content": val[0]})
|
| 45 |
+
# if val[1]:
|
| 46 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
| 47 |
|
| 48 |
+
#messages.append({"role": "user", "content": message})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
response = correct_text(message, max_tokens, num_beams, temperature, top_p)
|
| 51 |
+
yield response
|
| 52 |
|
| 53 |
"""
|
| 54 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
|
|
| 57 |
respond,
|
| 58 |
additional_inputs=[
|
| 59 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 60 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 61 |
+
gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams"),
|
| 62 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 63 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
| 64 |
],
|
| 65 |
)
|
| 66 |
|