"""Text-to-Speech service using Kokoro 82M via Modal GPU.""" import asyncio import os from collections.abc import Iterator from contextlib import contextmanager from functools import lru_cache from typing import Any, cast import numpy as np from numpy.typing import NDArray import structlog # Load .env file BEFORE importing Modal SDK # Modal SDK reads MODAL_TOKEN_ID and MODAL_TOKEN_SECRET from environment on import from dotenv import load_dotenv load_dotenv() from src.utils.config import settings from src.utils.exceptions import ConfigurationError logger = structlog.get_logger(__name__) # Kokoro TTS dependencies for Modal image KOKORO_DEPENDENCIES = [ "torch>=2.0.0", "transformers>=4.30.0", "numpy<2.0", # kokoro-82M can be installed from source: # git+https://github.com/hexgrad/kokoro.git ] # Modal app and function definitions (module-level for Modal) _modal_app: Any | None = None _tts_function: Any | None = None _tts_image: Any | None = None @contextmanager def modal_credentials_override(token_id: str | None, token_secret: str | None) -> Iterator[None]: """Context manager to temporarily override Modal credentials. Args: token_id: Modal token ID (overrides env if provided) token_secret: Modal token secret (overrides env if provided) Yields: None Note: Resets global Modal state to force re-initialization with new credentials. """ global _modal_app, _tts_function # Save original credentials original_token_id = os.environ.get("MODAL_TOKEN_ID") original_token_secret = os.environ.get("MODAL_TOKEN_SECRET") # Save original Modal state original_app = _modal_app original_function = _tts_function try: # Override environment variables if provided if token_id: os.environ["MODAL_TOKEN_ID"] = token_id if token_secret: os.environ["MODAL_TOKEN_SECRET"] = token_secret # Reset Modal state to force re-initialization _modal_app = None _tts_function = None yield finally: # Restore original credentials if original_token_id is not None: os.environ["MODAL_TOKEN_ID"] = original_token_id elif "MODAL_TOKEN_ID" in os.environ: del os.environ["MODAL_TOKEN_ID"] if original_token_secret is not None: os.environ["MODAL_TOKEN_SECRET"] = original_token_secret elif "MODAL_TOKEN_SECRET" in os.environ: del os.environ["MODAL_TOKEN_SECRET"] # Restore original Modal state _modal_app = original_app _tts_function = original_function def _get_modal_app() -> Any: """Get or create Modal app instance. Retrieves Modal credentials directly from environment variables (.env file) instead of relying on settings configuration. """ global _modal_app if _modal_app is None: try: import modal # Get credentials directly from environment variables token_id = os.getenv("MODAL_TOKEN_ID") token_secret = os.getenv("MODAL_TOKEN_SECRET") # Validate Modal credentials if not token_id or not token_secret: raise ConfigurationError( "Modal credentials not found in environment. " "Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in .env file." ) # Validate token ID format (Modal token IDs are typically UUIDs or specific formats) if len(token_id.strip()) < 10: raise ConfigurationError( f"Modal token ID appears malformed (too short: {len(token_id)} chars). " "Token ID should be a valid Modal token identifier." ) logger.info( "modal_credentials_loaded", token_id_prefix=token_id[:8] + "...", # Log prefix for debugging has_secret=bool(token_secret), ) try: # Use lookup with create_if_missing for inline function fallback _modal_app = modal.App.lookup("deepcritical-tts", create_if_missing=True) except Exception as e: error_msg = str(e).lower() if "token" in error_msg or "malformed" in error_msg or "invalid" in error_msg: raise ConfigurationError( f"Modal token validation failed: {e}. " "Please check that MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in .env are correctly set." ) from e raise except ImportError as e: raise ConfigurationError( "Modal SDK not installed. Run: uv sync or pip install modal>=0.63.0" ) from e return _modal_app # Define Modal image with Kokoro dependencies (module-level) def _get_tts_image() -> Any: """Get Modal image with Kokoro dependencies.""" global _tts_image if _tts_image is not None: return _tts_image try: import modal _tts_image = ( modal.Image.debian_slim(python_version="3.11") .pip_install(*KOKORO_DEPENDENCIES) .pip_install("git+https://github.com/hexgrad/kokoro.git") ) return _tts_image except ImportError: return None # Modal TTS function - Using serialized=True to allow dynamic creation # This will be initialized lazily when _setup_modal_function() is called def _create_tts_function() -> Any: """Create the Modal TTS function using serialized=True. The serialized=True parameter allows the function to be defined outside of global scope, which is necessary for dynamic initialization. """ app = _get_modal_app() tts_image = _get_tts_image() if tts_image is None: raise ConfigurationError("Modal image setup failed") # Get GPU and timeout from settings (with defaults) gpu_type = getattr(settings, "tts_gpu", None) or "T4" timeout_seconds = getattr(settings, "tts_timeout", None) or 120 # 2 minutes for cold starts @app.function( image=tts_image, gpu=gpu_type, timeout=timeout_seconds, serialized=True, # Allow function to be defined outside global scope ) def kokoro_tts_function(text: str, voice: str, speed: float) -> tuple[int, NDArray[np.float32]]: """Modal GPU function for Kokoro TTS. This function runs on Modal's GPU infrastructure. Based on: https://huggingface.co/spaces/hexgrad/Kokoro-TTS Reference: https://huggingface.co/spaces/hexgrad/Kokoro-TTS/raw/main/app.py """ import numpy as np # Import Kokoro inside function (lazy load) try: import torch from kokoro import KModel, KPipeline # Initialize model (cached on GPU) model = KModel().to("cuda").eval() pipeline = KPipeline(lang_code=voice[0]) pack = pipeline.load_voice(voice) # Generate audio for _, ps, _ in pipeline(text, voice, speed): ref_s = pack[len(ps) - 1] audio = model(ps, ref_s, speed) return (24000, audio.numpy()) # If no audio generated, return empty return (24000, np.zeros(1, dtype=np.float32)) except ImportError as e: raise ConfigurationError( "Kokoro not installed. Install with: pip install git+https://github.com/hexgrad/kokoro.git" ) from e except Exception as e: raise ConfigurationError(f"TTS synthesis failed: {e}") from e return kokoro_tts_function def _setup_modal_function() -> None: """Setup Modal GPU function for TTS (called once, lazy initialization). Hybrid approach: 1. Try to lookup pre-deployed function (fast path for advanced users) 2. If lookup fails, create function inline (fallback for casual users) This allows both workflows: - Advanced: Deploy with `modal deploy deployments/modal_tts.py` for best performance - Casual: Just add Modal keys and it auto-creates function on first use """ global _tts_function if _tts_function is not None: return # Already set up try: import modal # Try path 1: Lookup pre-deployed function (fast path) try: _tts_function = modal.Function.from_name("deepcritical-tts", "kokoro_tts_function") logger.info( "modal_tts_function_lookup_success", app_name="deepcritical-tts", function_name="kokoro_tts_function", method="lookup", ) return except Exception as lookup_error: logger.info( "modal_tts_function_lookup_failed", error=str(lookup_error), fallback="Creating function inline", ) # Try path 2: Create function inline (fallback for casual users) logger.info("modal_tts_creating_inline_function") _tts_function = _create_tts_function() logger.info( "modal_tts_function_setup_complete", app_name="deepcritical-tts", function_name="kokoro_tts_function", method="inline", ) except Exception as e: logger.error("modal_tts_function_setup_failed", error=str(e)) raise ConfigurationError( f"Failed to setup Modal TTS function: {e}. " "Ensure Modal credentials (MODAL_TOKEN_ID, MODAL_TOKEN_SECRET) are valid." ) from e class ModalTTSExecutor: """Execute Kokoro TTS synthesis on Modal GPU. This class provides TTS synthesis using Kokoro 82M model on Modal's GPU infrastructure. Follows the same pattern as ModalCodeExecutor but uses GPU functions for TTS. """ def __init__(self) -> None: """Initialize Modal TTS executor. Note: Logs a warning if Modal credentials are not configured in environment. Execution will fail at runtime without valid credentials in .env file. """ # Check for Modal credentials directly from environment token_id = os.getenv("MODAL_TOKEN_ID") token_secret = os.getenv("MODAL_TOKEN_SECRET") if not token_id or not token_secret: logger.warning( "Modal credentials not found in environment. " "TTS will not be available. Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in .env file." ) def synthesize( self, text: str, voice: str = "af_heart", speed: float = 1.0, timeout: int = 120, ) -> tuple[int, NDArray[np.float32]]: """Synthesize text to speech using Kokoro on Modal GPU. Args: text: Text to synthesize (max 5000 chars for free tier) voice: Voice ID from Kokoro (e.g., af_heart, af_bella, am_michael) speed: Speech speed multiplier (0.5-2.0) timeout: Maximum execution time (not used, Modal function has its own timeout) Returns: Tuple of (sample_rate, audio_array) Raises: ConfigurationError: If synthesis fails """ # Setup Modal function if not already done _setup_modal_function() if _tts_function is None: raise ConfigurationError("Modal TTS function not initialized") logger.info("synthesizing_tts", text_length=len(text), voice=voice, speed=speed) try: # Call the GPU function remotely result = cast(tuple[int, NDArray[np.float32]], _tts_function.remote(text, voice, speed)) logger.info( "tts_synthesis_complete", sample_rate=result[0], audio_shape=result[1].shape ) return result except Exception as e: logger.error("tts_synthesis_failed", error=str(e), error_type=type(e).__name__) raise ConfigurationError(f"TTS synthesis failed: {e}") from e class TTSService: """TTS service wrapper for async usage.""" def __init__(self) -> None: """Initialize TTS service. Validates Modal credentials from environment variables (.env file). """ # Check credentials directly from environment token_id = os.getenv("MODAL_TOKEN_ID") token_secret = os.getenv("MODAL_TOKEN_SECRET") if not token_id or not token_secret: raise ConfigurationError( "Modal credentials required for TTS. " "Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in .env file." ) self.executor = ModalTTSExecutor() async def synthesize_async( self, text: str, voice: str = "af_heart", speed: float = 1.0, ) -> tuple[int, NDArray[np.float32]] | None: """Async wrapper for TTS synthesis. Args: text: Text to synthesize voice: Voice ID (default: settings.tts_voice) speed: Speech speed (default: settings.tts_speed) Returns: Tuple of (sample_rate, audio_array) or None if error """ voice = voice or settings.tts_voice speed = speed or settings.tts_speed loop = asyncio.get_running_loop() try: result = await loop.run_in_executor( None, lambda: self.executor.synthesize(text, voice, speed), ) return result except Exception as e: logger.error("tts_synthesis_async_failed", error=str(e)) return None @lru_cache(maxsize=1) def get_tts_service() -> TTSService: """Get or create singleton TTS service instance. Returns: TTSService instance Raises: ConfigurationError: If Modal credentials not configured """ return TTSService() async def generate_audio_on_demand( text: str, modal_token_id: str | None = None, modal_token_secret: str | None = None, voice: str = "af_heart", speed: float = 1.0, use_llm_polish: bool = False, ) -> tuple[tuple[int, NDArray[np.float32]] | None, str]: """Generate audio on-demand with optional runtime credentials. Args: text: Text to synthesize modal_token_id: Modal token ID (UI input, overrides .env) modal_token_secret: Modal token secret (UI input, overrides .env) voice: Voice ID (default: af_heart) speed: Speech speed (default: 1.0) use_llm_polish: Apply LLM polish to text (default: False) Returns: Tuple of (audio_output, status_message) - audio_output: (sample_rate, audio_array) or None if failed - status_message: Status/error message for user Priority: UI credentials > .env credentials """ # Priority: UI keys > .env keys token_id = (modal_token_id or "").strip() or os.getenv("MODAL_TOKEN_ID") token_secret = (modal_token_secret or "").strip() or os.getenv("MODAL_TOKEN_SECRET") if not token_id or not token_secret: return ( None, "❌ Modal credentials required. Enter keys above or set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in .env", ) try: # Use credentials override context with modal_credentials_override(token_id, token_secret): # Import audio_processing here to avoid circular import from src.services.audio_processing import AudioService # Temporarily override LLM polish setting original_llm_polish = settings.tts_use_llm_polish try: settings.tts_use_llm_polish = use_llm_polish # Create fresh AudioService instance (bypass cache to pick up new credentials) audio_service = AudioService() audio_output = await audio_service.generate_audio_output( text=text, voice=voice, speed=speed, ) if audio_output: return audio_output, "✅ Audio generated successfully" else: return None, "⚠️ Audio generation returned no output" finally: settings.tts_use_llm_polish = original_llm_polish except ConfigurationError as e: logger.error("audio_generation_config_error", error=str(e)) return None, f"❌ Configuration error: {e}" except Exception as e: logger.error("audio_generation_failed", error=str(e), exc_info=True) return None, f"❌ Audio generation failed: {e}"