Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,464 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import SamProcessor, SamModel
|
| 3 |
-
from PIL import Image
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
| 6 |
-
import
|
| 7 |
-
import
|
| 8 |
|
| 9 |
-
|
| 10 |
-
model_id = "facebook/sam-vit-base"
|
| 11 |
-
processor = SamProcessor.from_pretrained(model_id)
|
| 12 |
-
model = SamModel.from_pretrained(model_id)
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
return [random.randint(0, 255) for _ in range(3)]
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
device = torch.device("cpu")
|
| 21 |
-
model.to(device)
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
outputs.pred_masks.cpu(),
|
| 30 |
inputs["original_sizes"].cpu(),
|
| 31 |
inputs["reshaped_input_sizes"].cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
mask = mask[0]
|
| 41 |
-
color = random_color()
|
| 42 |
-
for c in range(3):
|
| 43 |
-
overlay[:, :, c] = np.where(mask > 0.5, color[c], overlay[:, :, c])
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import cv2
|
| 6 |
|
| 7 |
+
print("🚀 Starting SAM2 App v2.1 - OPTIMIZED...")
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
print(f"📱 Using device: {device}")
|
|
|
|
| 11 |
|
| 12 |
+
model = None
|
| 13 |
+
processor = None
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
def load_model():
|
| 16 |
+
global model, processor
|
| 17 |
+
if model is None:
|
| 18 |
+
print("📦 Loading SAM model...")
|
| 19 |
+
try:
|
| 20 |
+
from transformers import SamModel, SamProcessor
|
| 21 |
+
|
| 22 |
+
model_name = "facebook/sam-vit-large"
|
| 23 |
+
|
| 24 |
+
processor = SamProcessor.from_pretrained(model_name)
|
| 25 |
+
model = SamModel.from_pretrained(model_name)
|
| 26 |
+
model.to(device)
|
| 27 |
+
print(f"✅ Model loaded: {model_name}")
|
| 28 |
+
except Exception as e:
|
| 29 |
+
print(f"❌ Error: {e}, falling back to base model")
|
| 30 |
+
model_name = "facebook/sam-vit-base"
|
| 31 |
+
processor = SamProcessor.from_pretrained(model_name)
|
| 32 |
+
model = SamModel.from_pretrained(model_name)
|
| 33 |
+
model.to(device)
|
| 34 |
+
return model, processor
|
| 35 |
|
| 36 |
+
def prepare_image(image, max_size=1024):
|
| 37 |
+
if isinstance(image, np.ndarray):
|
| 38 |
+
image_pil = Image.fromarray(image)
|
| 39 |
+
else:
|
| 40 |
+
image_pil = image
|
| 41 |
+
|
| 42 |
+
if image_pil.mode != 'RGB':
|
| 43 |
+
image_pil = image_pil.convert('RGB')
|
| 44 |
+
|
| 45 |
+
image_np = np.array(image_pil)
|
| 46 |
+
h, w = image_np.shape[:2]
|
| 47 |
+
|
| 48 |
+
if max(h, w) > max_size:
|
| 49 |
+
scale = max_size / max(h, w)
|
| 50 |
+
new_h, new_w = int(h * scale), int(w * scale)
|
| 51 |
+
image_pil = image_pil.resize((new_w, new_h), Image.Resampling.LANCZOS)
|
| 52 |
+
image_np = np.array(image_pil)
|
| 53 |
+
|
| 54 |
+
return image_pil, image_np
|
| 55 |
+
|
| 56 |
+
def refine_mask(mask, kernel_size=5):
|
| 57 |
+
"""Glättet Maskenkanten"""
|
| 58 |
+
mask_uint8 = (mask > 0).astype(np.uint8) * 255
|
| 59 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
|
| 60 |
+
mask_closed = cv2.morphologyEx(mask_uint8, cv2.MORPH_CLOSE, kernel)
|
| 61 |
+
mask_refined = cv2.morphologyEx(mask_closed, cv2.MORPH_OPEN, kernel)
|
| 62 |
+
return mask_refined > 0
|
| 63 |
|
| 64 |
+
def segment_automatic(image, quality="high", merge_parts=True):
|
| 65 |
+
"""
|
| 66 |
+
OPTIMIERTE Automatische Segmentierung
|
| 67 |
+
Schnell & präzise - kombiniert mehrere Masken
|
| 68 |
+
"""
|
| 69 |
+
if image is None:
|
| 70 |
+
return None, {"error": "Kein Bild hochgeladen"}
|
| 71 |
+
|
| 72 |
+
try:
|
| 73 |
+
print(f"🔄 Starting segmentation (quality: {quality}, merge: {merge_parts})...")
|
| 74 |
+
model, processor = load_model()
|
| 75 |
+
|
| 76 |
+
image_pil, image_np = prepare_image(image)
|
| 77 |
+
h, w = image_np.shape[:2]
|
| 78 |
+
|
| 79 |
+
center_x, center_y = w // 2, h // 2
|
| 80 |
+
|
| 81 |
+
# Single point inference mit multimask_output
|
| 82 |
+
inputs = processor(
|
| 83 |
+
image_pil,
|
| 84 |
+
input_points=[[[center_x, center_y]]],
|
| 85 |
+
input_labels=[[1]],
|
| 86 |
+
return_tensors="pt"
|
| 87 |
+
).to(device)
|
| 88 |
+
|
| 89 |
+
print("🧠 Running inference...")
|
| 90 |
+
with torch.no_grad():
|
| 91 |
+
outputs = model(**inputs, multimask_output=True)
|
| 92 |
+
|
| 93 |
+
masks = processor.image_processor.post_process_masks(
|
| 94 |
outputs.pred_masks.cpu(),
|
| 95 |
inputs["original_sizes"].cpu(),
|
| 96 |
inputs["reshaped_input_sizes"].cpu()
|
| 97 |
+
)[0]
|
| 98 |
+
|
| 99 |
+
scores = outputs.iou_scores.cpu().numpy()
|
| 100 |
+
if scores.ndim > 1:
|
| 101 |
+
scores = scores.flatten()
|
| 102 |
+
|
| 103 |
+
print(f"✅ Got {len(scores)} masks with scores: {scores}")
|
| 104 |
+
|
| 105 |
+
# SMART MERGING: Kombiniere alle guten Masken
|
| 106 |
+
if merge_parts:
|
| 107 |
+
combined_mask = np.zeros((h, w), dtype=bool)
|
| 108 |
+
masks_used = 0
|
| 109 |
+
|
| 110 |
+
for idx, score in enumerate(scores):
|
| 111 |
+
if score > 0.5: # Nur Masken mit gutem Score
|
| 112 |
+
if masks.ndim == 4:
|
| 113 |
+
mask = masks[0, idx].numpy()
|
| 114 |
+
else:
|
| 115 |
+
mask = masks[idx].numpy()
|
| 116 |
+
|
| 117 |
+
# OR-Kombination (super schnell!)
|
| 118 |
+
combined_mask = combined_mask | (mask > 0)
|
| 119 |
+
masks_used += 1
|
| 120 |
+
print(f" ✅ Added mask {idx} (score: {score:.3f})")
|
| 121 |
+
|
| 122 |
+
final_mask = combined_mask
|
| 123 |
+
print(f"🔗 Combined {masks_used} masks into one!")
|
| 124 |
+
else:
|
| 125 |
+
# Nur beste Maske
|
| 126 |
+
best_idx = np.argmax(scores)
|
| 127 |
+
if masks.ndim == 4:
|
| 128 |
+
final_mask = masks[0, best_idx].numpy() > 0
|
| 129 |
+
else:
|
| 130 |
+
final_mask = masks[best_idx].numpy() > 0
|
| 131 |
+
masks_used = 1
|
| 132 |
+
print(f"✅ Using best mask (score: {scores[best_idx]:.3f})")
|
| 133 |
+
|
| 134 |
+
# Refinement für glatte Kanten
|
| 135 |
+
if quality == "high":
|
| 136 |
+
print("🎨 Refining mask...")
|
| 137 |
+
final_mask = refine_mask(final_mask, kernel_size=7)
|
| 138 |
+
|
| 139 |
+
# Overlay erstellen
|
| 140 |
+
overlay = image_np.copy()
|
| 141 |
+
color = np.array([255, 80, 180]) # Rosa/Pink
|
| 142 |
+
|
| 143 |
+
mask_float = final_mask.astype(float)
|
| 144 |
+
if quality == "high":
|
| 145 |
+
mask_float = cv2.GaussianBlur(mask_float, (5, 5), 0)
|
| 146 |
+
|
| 147 |
+
# Farbiges Overlay
|
| 148 |
+
for c in range(3):
|
| 149 |
+
overlay[:, :, c] = (
|
| 150 |
+
overlay[:, :, c] * (1 - mask_float * 0.65) +
|
| 151 |
+
color[c] * mask_float * 0.65
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
# Gelbe Kontur zeichnen
|
| 155 |
+
contours, _ = cv2.findContours(
|
| 156 |
+
final_mask.astype(np.uint8),
|
| 157 |
+
cv2.RETR_EXTERNAL,
|
| 158 |
+
cv2.CHAIN_APPROX_SIMPLE
|
| 159 |
)
|
| 160 |
+
cv2.drawContours(overlay, contours, -1, (255, 255, 0), 3)
|
| 161 |
+
|
| 162 |
+
metadata = {
|
| 163 |
+
"success": True,
|
| 164 |
+
"mode": "automatic_plus" if merge_parts else "automatic",
|
| 165 |
+
"quality": quality,
|
| 166 |
+
"masks_combined": masks_used,
|
| 167 |
+
"all_scores": scores.tolist(),
|
| 168 |
+
"image_size": [w, h],
|
| 169 |
+
"mask_area": int(np.sum(final_mask)),
|
| 170 |
+
"mask_percentage": float(np.sum(final_mask) / (h * w) * 100),
|
| 171 |
+
"num_contours": len(contours),
|
| 172 |
+
"device": device
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
print("✅ Segmentation complete!")
|
| 176 |
+
return Image.fromarray(overlay.astype(np.uint8)), metadata
|
| 177 |
+
|
| 178 |
+
except Exception as e:
|
| 179 |
+
import traceback
|
| 180 |
+
print(f"❌ ERROR:\n{traceback.format_exc()}")
|
| 181 |
+
return image, {"error": str(e)}
|
| 182 |
|
| 183 |
+
def segment_multi_dense(image, density="medium"):
|
| 184 |
+
"""Multi-Object Segmentierung mit Grid"""
|
| 185 |
+
if image is None:
|
| 186 |
+
return None, {"error": "Kein Bild"}
|
| 187 |
+
|
| 188 |
+
try:
|
| 189 |
+
print(f"🎯 Starting multi-region segmentation (density: {density})...")
|
| 190 |
+
model, processor = load_model()
|
| 191 |
+
image_pil, image_np = prepare_image(image)
|
| 192 |
+
h, w = image_np.shape[:2]
|
| 193 |
+
|
| 194 |
+
# Grid-Größe basierend auf Density
|
| 195 |
+
if density == "high":
|
| 196 |
+
grid_size = 5
|
| 197 |
+
elif density == "medium":
|
| 198 |
+
grid_size = 4
|
| 199 |
+
else:
|
| 200 |
+
grid_size = 3
|
| 201 |
+
|
| 202 |
+
# Grid-Punkte generieren
|
| 203 |
+
points = []
|
| 204 |
+
for i in range(1, grid_size + 1):
|
| 205 |
+
for j in range(1, grid_size + 1):
|
| 206 |
+
x = int(w * i / (grid_size + 1))
|
| 207 |
+
y = int(h * j / (grid_size + 1))
|
| 208 |
+
points.append([x, y])
|
| 209 |
+
|
| 210 |
+
print(f"📍 Using {len(points)} grid points ({grid_size}x{grid_size})...")
|
| 211 |
+
|
| 212 |
+
all_masks = []
|
| 213 |
+
all_scores = []
|
| 214 |
+
|
| 215 |
+
# Segmentiere jeden Punkt
|
| 216 |
+
for idx, point in enumerate(points):
|
| 217 |
+
inputs = processor(
|
| 218 |
+
image_pil,
|
| 219 |
+
input_points=[[point]],
|
| 220 |
+
input_labels=[[1]],
|
| 221 |
+
return_tensors="pt"
|
| 222 |
+
).to(device)
|
| 223 |
+
|
| 224 |
+
with torch.no_grad():
|
| 225 |
+
outputs = model(**inputs, multimask_output=True)
|
| 226 |
+
|
| 227 |
+
masks = processor.image_processor.post_process_masks(
|
| 228 |
+
outputs.pred_masks.cpu(),
|
| 229 |
+
inputs["original_sizes"].cpu(),
|
| 230 |
+
inputs["reshaped_input_sizes"].cpu()
|
| 231 |
+
)[0]
|
| 232 |
+
|
| 233 |
+
scores = outputs.iou_scores.cpu().numpy().flatten()
|
| 234 |
+
best_idx = np.argmax(scores)
|
| 235 |
+
|
| 236 |
+
if masks.ndim == 4:
|
| 237 |
+
mask = masks[0, best_idx].numpy()
|
| 238 |
+
else:
|
| 239 |
+
mask = masks[best_idx].numpy()
|
| 240 |
+
|
| 241 |
+
# Nur Masken mit gutem Score
|
| 242 |
+
if scores[best_idx] > 0.7:
|
| 243 |
+
all_masks.append(refine_mask(mask))
|
| 244 |
+
all_scores.append(scores[best_idx])
|
| 245 |
+
|
| 246 |
+
print(f"✅ Got {len(all_masks)} quality masks")
|
| 247 |
+
|
| 248 |
+
# Overlay mit verschiedenen Farben
|
| 249 |
+
overlay = image_np.copy()
|
| 250 |
+
|
| 251 |
+
# HSV-basierte Farbgenerierung
|
| 252 |
+
colors = []
|
| 253 |
+
for i in range(len(all_masks)):
|
| 254 |
+
hue = int(180 * i / max(len(all_masks), 1))
|
| 255 |
+
color_hsv = np.uint8([[[hue, 255, 200]]])
|
| 256 |
+
color_rgb = cv2.cvtColor(color_hsv, cv2.COLOR_HSV2RGB)[0][0]
|
| 257 |
+
colors.append(color_rgb)
|
| 258 |
+
|
| 259 |
+
# Masken anwenden
|
| 260 |
+
for mask, color, score in zip(all_masks, colors, all_scores):
|
| 261 |
+
alpha = 0.4 + (score - 0.7) * 0.2 # Höherer Score = stärkere Farbe
|
| 262 |
+
overlay[mask] = (
|
| 263 |
+
overlay[mask] * (1 - alpha) +
|
| 264 |
+
np.array(color) * alpha
|
| 265 |
+
).astype(np.uint8)
|
| 266 |
+
|
| 267 |
+
# Kontur
|
| 268 |
+
contours, _ = cv2.findContours(
|
| 269 |
+
mask.astype(np.uint8),
|
| 270 |
+
cv2.RETR_EXTERNAL,
|
| 271 |
+
cv2.CHAIN_APPROX_SIMPLE
|
| 272 |
+
)
|
| 273 |
+
cv2.drawContours(overlay, contours, -1, color.tolist(), 2)
|
| 274 |
+
|
| 275 |
+
metadata = {
|
| 276 |
+
"success": True,
|
| 277 |
+
"mode": "multi_object_dense",
|
| 278 |
+
"density": density,
|
| 279 |
+
"grid_size": f"{grid_size}x{grid_size}",
|
| 280 |
+
"total_points": len(points),
|
| 281 |
+
"quality_masks": len(all_masks),
|
| 282 |
+
"avg_score": float(np.mean(all_scores)) if all_scores else 0,
|
| 283 |
+
"scores": [float(s) for s in all_scores]
|
| 284 |
+
}
|
| 285 |
+
|
| 286 |
+
print("✅ Multi-region complete!")
|
| 287 |
+
return Image.fromarray(overlay), metadata
|
| 288 |
+
|
| 289 |
+
except Exception as e:
|
| 290 |
+
import traceback
|
| 291 |
+
print(f"❌ ERROR:\n{traceback.format_exc()}")
|
| 292 |
+
return image, {"error": str(e)}
|
| 293 |
|
| 294 |
+
# Gradio Interface
|
| 295 |
+
demo = gr.Blocks(title="SAM2 Boostly", theme=gr.themes.Soft())
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
|
| 297 |
+
with demo:
|
| 298 |
+
gr.Markdown("# 🎨 SAM2 Segmentierung - Boostly Edition")
|
| 299 |
+
gr.Markdown("### ⚡ Optimierte Zero-Shot Object Segmentation")
|
| 300 |
+
|
| 301 |
+
with gr.Tab("🤖 Automatisch PLUS"):
|
| 302 |
+
gr.Markdown("**Smart Multi-Mask Combining** - Kombiniert automatisch alle Objektteile!")
|
| 303 |
+
|
| 304 |
+
with gr.Row():
|
| 305 |
+
with gr.Column():
|
| 306 |
+
input_auto = gr.Image(type="pil", label="📸 Bild hochladen")
|
| 307 |
+
|
| 308 |
+
quality_radio = gr.Radio(
|
| 309 |
+
choices=["high", "fast"],
|
| 310 |
+
value="high",
|
| 311 |
+
label="⚙️ Qualität",
|
| 312 |
+
info="High = präzisere Kanten, Fast = schneller"
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
merge_checkbox = gr.Checkbox(
|
| 316 |
+
value=True,
|
| 317 |
+
label="🔗 Teile zusammenfügen",
|
| 318 |
+
info="Kombiniert alle erkannten Bereiche (Fisch + Flosse = 1 Objekt)"
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
btn_auto = gr.Button("🚀 Segmentieren", variant="primary", size="lg")
|
| 322 |
+
|
| 323 |
+
gr.Markdown("""
|
| 324 |
+
**✨ Funktionsweise:**
|
| 325 |
+
- SAM generiert 3 verschiedene Masken
|
| 326 |
+
- Wenn "Teile zusammenfügen" AN: Alle kombiniert → vollständiges Objekt
|
| 327 |
+
- Wenn AUS: Nur präziseste Maske
|
| 328 |
+
- ⚡ Optimiert: ~10-30 Sekunden statt 25 Minuten!
|
| 329 |
+
""")
|
| 330 |
+
|
| 331 |
+
with gr.Column():
|
| 332 |
+
output_auto = gr.Image(label="✨ Segmentiertes Bild")
|
| 333 |
+
json_auto = gr.JSON(label="📊 Metadata")
|
| 334 |
+
|
| 335 |
+
btn_auto.click(
|
| 336 |
+
fn=segment_automatic,
|
| 337 |
+
inputs=[input_auto, quality_radio, merge_checkbox],
|
| 338 |
+
outputs=[output_auto, json_auto]
|
| 339 |
)
|
| 340 |
+
|
| 341 |
+
gr.Examples(
|
| 342 |
+
examples=[],
|
| 343 |
+
inputs=input_auto,
|
| 344 |
+
label="💡 Tipp: Objekt sollte zentral im Bild sein"
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
with gr.Tab("🎯 Multi-Region"):
|
| 348 |
+
gr.Markdown("**Grid-basierte Segmentierung** - Für mehrere separate Objekte")
|
| 349 |
+
|
| 350 |
+
with gr.Row():
|
| 351 |
+
with gr.Column():
|
| 352 |
+
input_multi = gr.Image(type="pil", label="📸 Bild hochladen")
|
| 353 |
+
|
| 354 |
+
density_radio = gr.Radio(
|
| 355 |
+
choices=["high", "medium", "low"],
|
| 356 |
+
value="medium",
|
| 357 |
+
label="📊 Punkt-Dichte",
|
| 358 |
+
info="Mehr Punkte = mehr Details, aber langsamer"
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
btn_multi = gr.Button("🎯 Alle Bereiche segmentieren", variant="primary", size="lg")
|
| 362 |
+
|
| 363 |
+
gr.Markdown("""
|
| 364 |
+
**Grid-Größen:**
|
| 365 |
+
- 🔥 High: 5x5 = 25 Erkennungspunkte
|
| 366 |
+
- ⚡ Medium: 4x4 = 16 Punkte (empfohlen)
|
| 367 |
+
- 💨 Low: 3x3 = 9 Punkte
|
| 368 |
+
|
| 369 |
+
Jedes Objekt bekommt eigene Farbe!
|
| 370 |
+
""")
|
| 371 |
+
|
| 372 |
+
with gr.Column():
|
| 373 |
+
output_multi = gr.Image(label="✨ Segmentiertes Bild")
|
| 374 |
+
json_multi = gr.JSON(label="📊 Metadata")
|
| 375 |
+
|
| 376 |
+
btn_multi.click(
|
| 377 |
+
fn=segment_multi_dense,
|
| 378 |
+
inputs=[input_multi, density_radio],
|
| 379 |
+
outputs=[output_multi, json_multi]
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
with gr.Tab("📡 API Dokumentation"):
|
| 383 |
+
gr.Markdown("### 🔗 API Endpoint")
|
| 384 |
+
gr.Code(
|
| 385 |
+
"https://EnginDev-Boostly.hf.space/api/predict",
|
| 386 |
+
label="Base URL"
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
gr.Markdown("### 📝 JavaScript Integration (für Lovable)")
|
| 390 |
+
gr.Code('''
|
| 391 |
+
// Segmentation Service
|
| 392 |
+
const HUGGINGFACE_API = 'https://EnginDev-Boostly.hf.space';
|
| 393 |
|
| 394 |
+
async function segmentImage(imageFile, mode = 'automatic') {
|
| 395 |
+
// File zu Base64 konvertieren
|
| 396 |
+
const base64 = await new Promise((resolve) => {
|
| 397 |
+
const reader = new FileReader();
|
| 398 |
+
reader.onloadend = () => resolve(reader.result);
|
| 399 |
+
reader.readAsDataURL(imageFile);
|
| 400 |
+
});
|
| 401 |
+
|
| 402 |
+
// API Call
|
| 403 |
+
const response = await fetch(`${HUGGINGFACE_API}/api/predict`, {
|
| 404 |
+
method: 'POST',
|
| 405 |
+
headers: {'Content-Type': 'application/json'},
|
| 406 |
+
body: JSON.stringify({
|
| 407 |
+
data: [base64, "high", true], // [image, quality, merge]
|
| 408 |
+
fn_index: mode === 'automatic' ? 0 : 1
|
| 409 |
+
})
|
| 410 |
+
});
|
| 411 |
+
|
| 412 |
+
const result = await response.json();
|
| 413 |
+
|
| 414 |
+
return {
|
| 415 |
+
segmentedImage: result.data[0], // Base64 segmentiertes Bild
|
| 416 |
+
metadata: result.data[1] // JSON mit Details
|
| 417 |
+
};
|
| 418 |
+
}
|
| 419 |
|
| 420 |
+
// Verwendung:
|
| 421 |
+
const result = await segmentImage(myImageFile, 'automatic');
|
| 422 |
+
console.log('Mask covers:', result.metadata.mask_percentage + '%');
|
| 423 |
+
''', language="javascript")
|
| 424 |
+
|
| 425 |
+
gr.Markdown("### ⚙️ Parameter")
|
| 426 |
+
gr.Markdown("""
|
| 427 |
+
**fn_index:**
|
| 428 |
+
- `0` = Automatisch PLUS (empfohlen für einzelne Objekte)
|
| 429 |
+
- `1` = Multi-Region (für mehrere Objekte)
|
| 430 |
+
|
| 431 |
+
**quality:**
|
| 432 |
+
- `"high"` = Präzise Kanten, Gaussian Blur, Refinement (~20-30s)
|
| 433 |
+
- `"fast"` = Schneller, weniger Nachbearbeitung (~10-15s)
|
| 434 |
+
|
| 435 |
+
**merge (nur fn_index=0):**
|
| 436 |
+
- `true` = Kombiniert alle Masken → vollständiges Objekt
|
| 437 |
+
- `false` = Nur beste Maske → nur Hauptteil
|
| 438 |
+
|
| 439 |
+
**density (nur fn_index=1):**
|
| 440 |
+
- `"high"` = 5x5 Grid = 25 Punkte
|
| 441 |
+
- `"medium"` = 4x4 Grid = 16 Punkte
|
| 442 |
+
- `"low"` = 3x3 Grid = 9 Punkte
|
| 443 |
+
""")
|
| 444 |
+
|
| 445 |
+
gr.Markdown("### 📊 Response Format")
|
| 446 |
+
gr.Code('''
|
| 447 |
+
{
|
| 448 |
+
"data": [
|
| 449 |
+
"...", // Segmentiertes Bild
|
| 450 |
+
{
|
| 451 |
+
"success": true,
|
| 452 |
+
"mode": "automatic_plus",
|
| 453 |
+
"masks_combined": 3,
|
| 454 |
+
"mask_percentage": 12.5,
|
| 455 |
+
"num_contours": 1,
|
| 456 |
+
"all_scores": [0.998, 0.583, 0.864]
|
| 457 |
+
}
|
| 458 |
+
]
|
| 459 |
+
}
|
| 460 |
+
''', language="json")
|
| 461 |
|
| 462 |
+
if __name__ == "__main__":
|
| 463 |
+
print("🌐 Launching Boostly SAM2 v2.1...")
|
| 464 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)
|