import gradio as gr import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import torch from threading import Thread import os import logging # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Model and tokenizer configuration MODEL_NAME = "FractalAIResearch/Fathom-R1-14B" device = "cuda:0" if torch.cuda.is_available() else "cpu" # Load tokenizer and model try: logger.info("Loading tokenizer and model...") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.bfloat16, # Optimize for H200 GPUs device_map="auto", # Automatically distribute across GPU trust_remote_code=True # Required for Qwen2-based models ) logger.info("Model and tokenizer loaded successfully.") except Exception as e: logger.error(f"Error loading model or tokenizer: {str(e)}") raise e # Ensure model is on GPU #model = model.to(device) @spaces.GPU(duration=300) def generate_response(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, history_state): if not user_message.strip(): logger.info("Empty message received, returning history unchanged.") return history_state, history_state try: logger.info("Processing new message...") # System prompt for Fathom-R1-14B system_message = "You are a helpful assistant, specialising at math and STEM reasoning." # Build messages list using Qwen2 chat template format messages = [{"role": "system", "content": system_message}] for message in history_state: messages.append({"role": message["role"], "content": message["content"]}) messages.append({"role": "user", "content": user_message}) # Apply Qwen2 chat template prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize input inputs = tokenizer(prompt, return_tensors="pt").to(device) # Configure sampling do_sample = not (temperature == 1.0 and top_k >= 100 and top_p == 1.0) # Set up streaming streamer = TextIteratorStreamer(tokenizer, skip_prompt=True) # Generation parameters generation_kwargs = { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "max_new_tokens": int(max_tokens), "do_sample": do_sample, "temperature": temperature, "top_k": int(top_k), "top_p": top_p, "repetition_penalty": repetition_penalty, "streamer": streamer, "pad_token_id": tokenizer.eos_token_id, "eos_token_id": tokenizer.eos_token_id } # Start generation in a separate thread thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # Stream the response assistant_response = "" new_history = history_state + [ {"role": "user", "content": user_message}, {"role": "assistant", "content": ""} ] for new_token in streamer: assistant_response += new_token new_history[-1]["content"] = assistant_response.strip() yield new_history, new_history logger.info("Response generated successfully.") yield new_history, new_history except Exception as e: logger.error(f"Error during inference: {str(e)}") return f"Error: {str(e)}", history_state # Example prompts example_messages = { "IIT-JEE 2025 Physics": "A person sitting inside an elevator performs a weighing experiment with an object of mass 50 kg. Suppose that the variation of the height 𝑦 (in m) of the elevator, from the ground, with time 𝑑 (in s) is given by 𝑦 = 8 [1 + sin ( 2πœ‹π‘‘/𝑇 )], where 𝑇 = 40πœ‹ s. Taking acceleration due to gravity, 𝑔 = 10 m/s^2 , the maximum variation of the object’s weight (in N) as observed in the experiment is ?", "Goldman Sachs Interview Puzzle": "Four friends need to cross a dangerous bridge at night. Unfortunately, they have only one torch and the bridge is too dangerous to cross without one. The bridge is only strong enough to support two people at a time. Not all people take the same time to cross the bridge. Times for each person: 1 min, 2 mins, 7 mins and 10 mins. What is the shortest time needed for all four of them to cross the bridge?", "IIT-JEE 2025 Mathematics": "Let 𝑆 be the set of all seven-digit numbers that can be formed using the digits 0, 1 and 2. For example, 2210222 is in 𝑆, but 0210222 is NOT in 𝑆.Then the number of elements π‘₯ in 𝑆 such that at least one of the digits 0 and 1 appears exactly twice in π‘₯, is ?" } # Gradio interface with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown( """ # Fathom-R1-14B Chatbot Welcome to the Fathom-R1-14B Chatbot! This model excels at multi-step reasoning tasks in mathematics, logic, and science. The model specializes in math and STEM reasoning, providing detailed step-by-step solutions. Try the example problems below to see how the model breaks down complex reasoning problems. """ ) history_state = gr.State([]) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Settings") max_tokens_slider = gr.Slider( minimum=8192, maximum=16384, # Fathom’s context window is 16K step=1024, value=16384, label="Max Tokens" ) with gr.Accordion("Advanced Settings", open=False): temperature_slider = gr.Slider( minimum=0.1, maximum=2.0, value=0.8, label="Temperature" ) top_k_slider = gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Top-k" ) top_p_slider = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, label="Top-p" ) repetition_penalty_slider = gr.Slider( minimum=1.0, maximum=2.0, value=1.0, label="Repetition Penalty" ) with gr.Column(scale=4): chatbot = gr.Chatbot(label="Chat", type="messages") with gr.Row(): user_input = gr.Textbox( label="Your message", placeholder="Type your message here...", scale=3 ) submit_button = gr.Button("Send", variant="primary", scale=1) clear_button = gr.Button("Clear", scale=1) gr.Markdown("**Try these examples:**") with gr.Row(): example1_button = gr.Button("IIT-JEE 2025 Mathematics") example2_button = gr.Button("Goldman Sachs Interview Puzzle") example3_button = gr.Button("IIT-JEE 2025 Physics") submit_button.click( fn=generate_response, inputs=[user_input, max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repetition_penalty_slider, history_state], outputs=[chatbot, history_state] ).then( fn=lambda: gr.update(value=""), inputs=None, outputs=user_input ) clear_button.click( fn=lambda: ([], []), inputs=None, outputs=[chatbot, history_state] ) example1_button.click( fn=lambda: gr.update(value=example_messages["IIT-JEE 2025 Mathematics"]), inputs=None, outputs=user_input ) example2_button.click( fn=lambda: gr.update(value=example_messages["Goldman Sachs Interview Puzzle"]), inputs=None, outputs=user_input ) example3_button.click( fn=lambda: gr.update(value=example_messages["IIT-JEE 2025 Physics"]), inputs=None, outputs=user_input ) demo.launch(ssr_mode=False)