|
|
import sys |
|
|
import os |
|
|
import re |
|
|
import gradio as gr |
|
|
import torch |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
from threading import Thread |
|
|
from huggingface_hub import login |
|
|
from dotenv import load_dotenv |
|
|
|
|
|
|
|
|
project_root = os.path.dirname(os.path.abspath(__file__)) |
|
|
sys.path.insert(0, project_root) |
|
|
|
|
|
|
|
|
try: |
|
|
import spaces |
|
|
print("'spaces' module imported successfully.") |
|
|
except ImportError: |
|
|
print("Warning: 'spaces' module not found. Using dummy decorator for local execution.") |
|
|
class DummySpaces: |
|
|
def GPU(self, *args, **kwargs): |
|
|
def decorator(func): |
|
|
print(f"Note: Dummy @GPU decorator used for function '{func.__name__}'.") |
|
|
return func |
|
|
return decorator |
|
|
spaces = DummySpaces() |
|
|
|
|
|
|
|
|
load_dotenv() |
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
if not HF_TOKEN: |
|
|
raise ValueError("FATAL: Hugging Face token not found. Please set the HF_TOKEN environment variable.") |
|
|
print("--- Logging in to Hugging Face Hub ---") |
|
|
login(token=HF_TOKEN) |
|
|
|
|
|
|
|
|
MODEL_NAME = "Gregniuki/ERNIE-4.5-0.3B-PT-Translator-EN-PL-EN" |
|
|
print(f"--- Loading model from Hugging Face Hub: {MODEL_NAME} ---") |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
dtype = torch.bfloat16 if device.type == "cuda" else torch.float32 |
|
|
print(f"--- Using device: {device}, dtype: {dtype} ---") |
|
|
|
|
|
try: |
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) |
|
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=dtype, trust_remote_code=True).to(device) |
|
|
model.eval() |
|
|
print("--- Model and Tokenizer Loaded Successfully ---") |
|
|
except Exception as e: |
|
|
raise RuntimeError(f"FATAL: Could not load components. Error: {e}") |
|
|
|
|
|
|
|
|
def chunk_text(text: str, max_size: int) -> list[str]: |
|
|
if not text: return [] |
|
|
chunks, start_index = [], 0 |
|
|
while start_index < len(text): |
|
|
end_index = start_index + max_size |
|
|
if end_index >= len(text): |
|
|
chunks.append(text[start_index:]); break |
|
|
split_pos = text.rfind('.', start_index, end_index) |
|
|
if split_pos != -1: |
|
|
chunk, start_index = text[start_index : split_pos + 1], split_pos + 1 |
|
|
else: |
|
|
chunk, start_index = text[start_index:end_index], end_index |
|
|
chunks.append(chunk.strip()) |
|
|
return [c for c in chunks if c] |
|
|
|
|
|
|
|
|
@spaces.GPU |
|
|
@torch.no_grad() |
|
|
def translate_with_chunks(input_text: str, chunk_size: int, temperature: float, top_p: float, top_k: int, progress=gr.Progress()) -> str: |
|
|
""" |
|
|
Processes text by translating each chunk independently and streams the |
|
|
results back token-by-token for a smooth, real-time user experience. |
|
|
""" |
|
|
progress(0, desc="Starting...") |
|
|
if not input_text: |
|
|
yield "Input text is empty. Please enter some text to translate." |
|
|
return |
|
|
|
|
|
text_chunks = chunk_text(input_text, chunk_size) if len(input_text) > chunk_size else [input_text] |
|
|
num_chunks = len(text_chunks) |
|
|
print(f"Processing {num_chunks} independent chunk(s).") |
|
|
|
|
|
full_output = "" |
|
|
for i, chunk in enumerate(text_chunks): |
|
|
progress(0.1 + (i / num_chunks) * 0.9, desc=f"Translating chunk {i+1}/{num_chunks}") |
|
|
|
|
|
messages = [{"role": "user", "content": chunk}] |
|
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
model_inputs = tokenizer([prompt], add_special_tokens=False, return_tensors="pt").to(device) |
|
|
|
|
|
|
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
|
|
|
|
|
generation_kwargs = dict( |
|
|
**model_inputs, |
|
|
streamer=streamer, |
|
|
max_new_tokens=2048, |
|
|
do_sample=True, |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
top_k=top_k |
|
|
) |
|
|
|
|
|
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
|
thread.start() |
|
|
|
|
|
|
|
|
for new_token in streamer: |
|
|
full_output += new_token |
|
|
yield full_output |
|
|
|
|
|
|
|
|
full_output += " " |
|
|
yield full_output.strip() |
|
|
|
|
|
progress(1.0, desc="Done!") |
|
|
|
|
|
|
|
|
|
|
|
print("\n--- Initializing Gradio Interface ---") |
|
|
app = gr.Interface( |
|
|
fn=translate_with_chunks, |
|
|
inputs=[ |
|
|
gr.Textbox(lines=15, label="Input Text", placeholder="Enter long text to process here..."), |
|
|
gr.Slider( |
|
|
minimum=256, |
|
|
maximum=2048, |
|
|
value=2048, |
|
|
step=64, |
|
|
label="Character Chunk Size", |
|
|
info="Text will be split into chunks of this size for translation." |
|
|
), |
|
|
gr.Slider( |
|
|
minimum=0.01, |
|
|
maximum=2.0, |
|
|
value=0.7, |
|
|
step=0.01, |
|
|
label="Temperature", |
|
|
info="Controls randomness. Higher values mean more random outputs." |
|
|
), |
|
|
gr.Slider( |
|
|
minimum=0.0, |
|
|
maximum=1.0, |
|
|
value=0.95, |
|
|
step=0.05, |
|
|
label="Top-p (Nucleus Sampling)", |
|
|
info="Selects from tokens with a cumulative probability mass up to this value." |
|
|
), |
|
|
gr.Slider( |
|
|
minimum=0, |
|
|
maximum=100, |
|
|
value=50, |
|
|
step=1, |
|
|
label="Top-k", |
|
|
info="Selects from the top 'k' most likely tokens at each step." |
|
|
) |
|
|
], |
|
|
outputs=gr.Textbox(lines=15, label="Model Output", interactive=False), |
|
|
title="ERNIE 4.5 Text Translator (Real-Time Streaming)", |
|
|
description="Processes long text by splitting it into independent chunks and streams the translation in real-time.", |
|
|
allow_flagging="never" |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
app.queue().launch() |