|
|
|
|
|
|
|
|
import sys |
|
|
import os |
|
|
import gradio as gr |
|
|
import torch |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
from huggingface_hub import login |
|
|
from dotenv import load_dotenv |
|
|
|
|
|
|
|
|
project_root = os.path.dirname(os.path.abspath(__file__)) |
|
|
sys.path.insert(0, project_root) |
|
|
|
|
|
|
|
|
try: |
|
|
import spaces |
|
|
print("'spaces' module imported successfully.") |
|
|
except ImportError: |
|
|
print("Warning: 'spaces' module not found. Using dummy decorator for local execution.") |
|
|
class DummySpaces: |
|
|
def GPU(self, *args, **kwargs): |
|
|
def decorator(func): |
|
|
print(f"Note: Dummy @GPU decorator used for function '{func.__name__}'.") |
|
|
return func |
|
|
return decorator |
|
|
spaces = DummySpaces() |
|
|
|
|
|
|
|
|
load_dotenv() |
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
|
|
if not HF_TOKEN: |
|
|
raise ValueError("FATAL: Hugging Face token not found. Please set the HF_TOKEN environment variable.") |
|
|
|
|
|
print("--- Logging in to Hugging Face Hub ---") |
|
|
login(token=HF_TOKEN) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MODEL_NAME = "Gregniuki/ERNIE-4.5-0.3B-PT-Translator-EN-PL-EN" |
|
|
|
|
|
print(f"--- Loading model from Hugging Face Hub: {MODEL_NAME} ---") |
|
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
|
device = torch.device("cuda") |
|
|
print("GPU detected. Using CUDA.") |
|
|
else: |
|
|
device = torch.device("cpu") |
|
|
print("No GPU detected. Using CPU.") |
|
|
|
|
|
dtype = torch.bfloat16 if device.type == "cuda" else torch.float32 |
|
|
print(f"--- Using dtype: {dtype} ---") |
|
|
|
|
|
print(f"--- Loading tokenizer from Hub: {MODEL_NAME} ---") |
|
|
try: |
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
|
MODEL_NAME, |
|
|
trust_remote_code=True |
|
|
) |
|
|
print("--- Tokenizer Loaded Successfully ---") |
|
|
except Exception as e: |
|
|
raise RuntimeError(f"FATAL: Could not load tokenizer from the Hub. Error: {e}") |
|
|
|
|
|
print(f"--- Loading Model with PyTorch from Hub: {MODEL_NAME} ---") |
|
|
try: |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
MODEL_NAME, |
|
|
torch_dtype=dtype, |
|
|
trust_remote_code=True |
|
|
).to(device) |
|
|
model.eval() |
|
|
print("--- Model Loaded Successfully ---") |
|
|
except Exception as e: |
|
|
raise RuntimeError(f"FATAL: Could not load model from the Hub. Error: {e}") |
|
|
|
|
|
|
|
|
|
|
|
def chunk_text(text: str, max_size: int) -> list[str]: |
|
|
"""Splits text into chunks, trying to break at sentence endings.""" |
|
|
if not text: return [] |
|
|
chunks, start_index = [], 0 |
|
|
while start_index < len(text): |
|
|
end_index = start_index + max_size |
|
|
if end_index >= len(text): |
|
|
chunks.append(text[start_index:]) |
|
|
break |
|
|
split_pos = text.rfind('.', start_index, end_index) |
|
|
if split_pos != -1: |
|
|
chunk, start_index = text[start_index : split_pos + 1], split_pos + 1 |
|
|
else: |
|
|
chunk, start_index = text[start_index:end_index], end_index |
|
|
chunks.append(chunk.strip()) |
|
|
return [c for c in chunks if c] |
|
|
|
|
|
|
|
|
|
|
|
def do_translation(text_to_translate: str) -> str: |
|
|
"""A clean helper function to run a single translation.""" |
|
|
if not text_to_translate.strip(): |
|
|
return "" |
|
|
messages = [{"role": "user", "content": text_to_translate}] |
|
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
model_inputs = tokenizer([prompt], add_special_tokens=False, return_tensors="pt").to(device) |
|
|
|
|
|
generated_ids = model.generate( |
|
|
**model_inputs, |
|
|
max_new_tokens=2048, |
|
|
do_sample=True, temperature=0.7, top_p=0.95, top_k=50 |
|
|
) |
|
|
|
|
|
input_token_len = model_inputs.input_ids.shape[1] |
|
|
output_ids = generated_ids[0][input_token_len:].tolist() |
|
|
return tokenizer.decode(output_ids, skip_special_tokens=True).strip() |
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU |
|
|
@torch.no_grad() |
|
|
def translate_with_chunks(input_text: str, chunk_size: int, context_words: int, progress=gr.Progress()) -> str: |
|
|
""" |
|
|
Processes text by chunks, using a robust word-by-word 'diff' algorithm |
|
|
to reliably find and remove the overlapping translation. |
|
|
""" |
|
|
progress(0, desc="Starting...") |
|
|
print("--- Inference with robust 'diff' context method started ---") |
|
|
if not input_text or not input_text.strip(): |
|
|
return "Input text is empty. Please enter some text to translate." |
|
|
|
|
|
progress(0.1, desc="Chunking Text...") |
|
|
text_chunks = chunk_text(input_text, chunk_size) if len(input_text) > chunk_size else [input_text] |
|
|
num_chunks = len(text_chunks) |
|
|
print(f"Processing {num_chunks} chunk(s).") |
|
|
|
|
|
all_results = [] |
|
|
english_context = "" |
|
|
|
|
|
for i, chunk in enumerate(text_chunks): |
|
|
progress(0.2 + (i / num_chunks) * 0.7, desc=f"Translating chunk {i+1}/{num_chunks}") |
|
|
|
|
|
prompt_with_context = (english_context + " " + chunk).strip() |
|
|
full_translation = do_translation(prompt_with_context) |
|
|
|
|
|
final_translation_for_chunk = full_translation |
|
|
if english_context: |
|
|
translated_context = do_translation(english_context) |
|
|
|
|
|
|
|
|
context_words_list = translated_context.split() |
|
|
full_translation_words_list = full_translation.split() |
|
|
|
|
|
|
|
|
overlap_len_in_words = 0 |
|
|
for i in range(min(len(context_words_list), len(full_translation_words_list))): |
|
|
|
|
|
if context_words_list[i].strip('.,!?;:').lower() != full_translation_words_list[i].strip('.,!?;:').lower(): |
|
|
break |
|
|
overlap_len_in_words += 1 |
|
|
|
|
|
|
|
|
final_translation_for_chunk = " ".join(full_translation_words_list[overlap_len_in_words:]) |
|
|
|
|
|
|
|
|
all_results.append(final_translation_for_chunk) |
|
|
print(f"Chunk {i+1} processed successfully.") |
|
|
|
|
|
if context_words > 0: |
|
|
words = chunk.split() |
|
|
english_context = " ".join(words[-context_words:]) |
|
|
|
|
|
progress(0.95, desc="Reassembling Results...") |
|
|
full_output = " ".join(all_results) |
|
|
|
|
|
progress(1.0, desc="Done!") |
|
|
return full_output |
|
|
|
|
|
|
|
|
print("\n--- Initializing Gradio Interface ---") |
|
|
|
|
|
app = gr.Interface( |
|
|
fn=translate_with_chunks, |
|
|
inputs=[ |
|
|
gr.Textbox(lines=15, label="Input Text", placeholder="Enter long text to process here..."), |
|
|
gr.Slider(minimum=128, maximum=1536, value=1024, step=64, label="Character Chunk Size"), |
|
|
gr.Slider( |
|
|
minimum=0, |
|
|
maximum=50, |
|
|
value=15, |
|
|
step=5, |
|
|
label="Context Overlap (Source Words)", |
|
|
info="Number of English words from the end of the previous chunk to provide as context for the next one. Ensures consistency." |
|
|
) |
|
|
], |
|
|
outputs=gr.Textbox(lines=15, label="Model Output", interactive=False), |
|
|
title="ERNIE 4.5 Context-Aware Translator", |
|
|
description="Processes long text using a robust 'diff' algorithm to ensure high-quality, consistent translations without duplication.", |
|
|
allow_flagging="never" |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
app.queue().launch() |